(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 12.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 158141, 3173] NotebookOptionsPosition[ 155557, 3124] NotebookOutlinePosition[ 156020, 3141] CellTagsIndexPosition[ 155977, 3138] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[TextData[StyleBox["Metody numeryczne, Informatyka NS sem. III, \ 2024/2025", "Title", FontSize->32]], "Department", CellChangeTimes->{{3.868432840720064*^9, 3.8684328697757263`*^9}, 3.8697199849750853`*^9, {3.879746669803049*^9, 3.8797466701550694`*^9}, { 3.9414580503831253`*^9, 3.941458051726114*^9}}, Background->RGBColor[ 0.3176470588235294, 0.792156862745098, 0.38823529411764707`],ExpressionUUID->"3ecdf458-2a6b-44bb-9565-\ 9724cb61e3d2"], Cell[CellGroupData[{ Cell["Projekt 6 \[Dash] metoda Rungego-Kutty", "Title", CellChangeTimes->{ 3.8697142668080516`*^9, 3.869717346319167*^9, 3.8702756410925226`*^9, 3.871097930819407*^9, {3.8714472123754215`*^9, 3.8714472260462036`*^9}, 3.8714496855038767`*^9, {3.8714497460323386`*^9, 3.871449747999451*^9}, 3.8714500152557373`*^9, {3.8714538308079543`*^9, 3.871453840071484*^9}, 3.8715216256560965`*^9, {3.8715216620010786`*^9, 3.8715216644792094`*^9}, 3.871617940007623*^9, {3.871618025025769*^9, 3.871618033475783*^9}, 3.879746667330908*^9, {3.8797467080432367`*^9, 3.8797467203869424`*^9}, 3.879747920131564*^9, {3.879750984892215*^9, 3.8797509979073105`*^9}}, Background->RGBColor[ 0.24705882352941178`, 0.8627450980392157, 0.13725490196078433`],ExpressionUUID->"ef2da835-16bd-4bb6-b48d-\ e0e621a4805f"], Cell["Napisz program, kt\[OAcute]ry dla argument\[OAcute]w \ wej\:015bciowych:", "Text", CellChangeTimes->{{3.871447287767734*^9, 3.8714473063837986`*^9}},ExpressionUUID->"867bd96c-1d1b-47bd-8155-\ a686c54958f9"], Cell[TextData[{ StyleBox["f \[Dash] ", FontSlant->"Italic"], "funkcja rozwi\:0105zywanego r\[OAcute]wnania r\[OAcute]\:017cniczkowego ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"y", "'"}], "=", RowBox[{"f", "(", RowBox[{"x", ",", "y"}], ")"}]}], TraditionalForm]],ExpressionUUID-> "6caacff7-6436-4400-942f-db0137dce0f7"], "," }], "Item", CellChangeTimes->{{3.871447320430602*^9, 3.871447442847604*^9}, 3.871447493967528*^9, {3.871453862823786*^9, 3.8714538905513716`*^9}, { 3.8716192011852283`*^9, 3.871619215282034*^9}, {3.879746730363513*^9, 3.8797467350827827`*^9}, {3.8797479351394224`*^9, 3.8797479886684837`*^9}},ExpressionUUID->"98a6277e-6d13-4077-b793-\ 753ccae6cca1"], Cell[TextData[{ StyleBox["a \[Dash] ", FontSlant->"Italic"], "pocz\:0105tek przedzia\[LSlash]u," }], "Item", CellChangeTimes->{{3.871447320430602*^9, 3.87144745343921*^9}, 3.871447495159596*^9, {3.87145389577567*^9, 3.8714539158458185`*^9}, { 3.8716192193772683`*^9, 3.8716192280087624`*^9}, {3.879746744491321*^9, 3.8797467468274546`*^9}, {3.879747998315036*^9, 3.879748008322608*^9}},ExpressionUUID->"cfa79e64-24e8-4bb7-b10e-\ 0418f706dc42"], Cell[TextData[{ StyleBox["b \[Dash] ", FontSlant->"Italic"], "koniec przedzia\[LSlash]u," }], "Item", CellChangeTimes->{{3.871447320430602*^9, 3.87144745343921*^9}, 3.871447495159596*^9, {3.87145389577567*^9, 3.8714539158458185`*^9}, { 3.8715222733930206`*^9, 3.871522290415994*^9}, {3.8716192344651318`*^9, 3.8716192411605144`*^9}, {3.879746750643673*^9, 3.8797467510026937`*^9}, { 3.87974801080275*^9, 3.879748010938758*^9}},ExpressionUUID->"ce45a20e-411e-43e3-b785-\ 10972edb6363"], Cell[TextData[{ StyleBox["y0 \[Dash] ", FontSlant->"Italic"], "warto\:015b\[CAcute] z warunku pocz\:0105tkowego," }], "Item", CellChangeTimes->{{3.871447320430602*^9, 3.87144745343921*^9}, 3.871447495159596*^9, {3.87145389577567*^9, 3.8714539158458185`*^9}, { 3.871521943237137*^9, 3.8715219612081647`*^9}, {3.8716192448007226`*^9, 3.8716192604006147`*^9}, {3.8797467627153635`*^9, 3.8797467954842377`*^9}, {3.8797480245165343`*^9, 3.8797480378112946`*^9}},ExpressionUUID->"ab84fd27-8933-49cb-ad4a-\ f89ea3c965e5"], Cell[TextData[{ StyleBox["n \[Dash] ", FontSlant->"Italic"], "liczba punkt\[OAcute]w w\:0119z\[LSlash]owych," }], "Item", CellChangeTimes->{{3.871447320430602*^9, 3.87144745343921*^9}, 3.871447495159596*^9, {3.87145389577567*^9, 3.8714539158458185`*^9}, { 3.871521943237137*^9, 3.8715219612081647`*^9}, {3.8716192448007226`*^9, 3.8716192604006147`*^9}, {3.8797467627153635`*^9, 3.8797468068438873`*^9}, 3.8797480214343576`*^9},ExpressionUUID->"8f4e220e-3cd5-44ea-93b7-\ 653ac15af1d3"], Cell[TextData[{ "poszukiwa\[LSlash] b\:0119dzie (i por\[OAcute]wnywa\[LSlash] ze sob\:0105) \ rozwi\:0105za\:0144 zagadnienia Cauchy\[CloseCurlyQuote]ego ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ RowBox[{"y", "'"}], "=", RowBox[{"f", "(", RowBox[{"x", ",", "y"}], ")"}]}], ",", " ", RowBox[{"x", "\[Element]", RowBox[{"[", RowBox[{"a", ",", "b"}], "]"}]}], ",", " ", RowBox[{ RowBox[{"y", "(", "a", ")"}], "=", SubscriptBox["y", "0"]}]}], TraditionalForm]],ExpressionUUID-> "17f9e507-3c1c-43a6-b607-0aba7a1a28e4"], " metodami Rungego-Kutty rz\:0119du 3 i 4. Program zwraca\[LSlash] \ b\:0119dzie dwa rysunki. \nNa pierwszym znajdowa\[CAcute] si\:0119 b\:0119d\ \:0105 wykresy rozwi\:0105zania dok\[LSlash]adnego (linia \ ci\:0105g\[LSlash]a), rozwi\:0105zania uzyskanego metod\:0105 Rungego-Kutty \ rz\:0119du 3 (czerwone punkty) i\n rozwi\:0105zania uzyskanego metod\:0105 \ Rungego-Kutty rz\:0119du 4 (zielone punkty). Na drugim wykresie \ b\:0119d\:0105 przedstawione \nb\[LSlash]\:0119dy bezwzgl\:0119dne obu metod \ (kolory jak poprzednio).\nWskaz\[OAcute]wka: rozwi\:0105zanie \ dok\[LSlash]adne mo\:017cna uzyska\[CAcute] dzi\:0119ki poleceniu: DSolve[{y\ \[CloseCurlyQuote][x]\[Equal]f[x,y[x]],y[a]\[Equal]y0},y[x],x]\ \[LeftDoubleBracket]1,1,2\[RightDoubleBracket]" }], "Text", CellChangeTimes->CompressedData[" 1:eJxTTMoPSmViYGCQAmIQvWHxHkvjG28cX83KcgbRGzKFJoHouD+n5oDoCJv9 C0D0bMXoRSB6hf6+5SB63+8rq0D0p1pTexMg7Rac4gCiDeYcTwHRn759BtPH nlbngmg9lYmFIPrm/npOUyDNwdfMB6IZkgVizIB07mmHFBAdERfRAqJN9Oe2 g2nvxupwIJ1h9A9MP+o4PRVES/kybQTRla8/7AfRL1+1HgLRORsF/0eC/CN/ TjgKSHfvW7kCROc7iqwD0T8Wf5WOBtIvhOxVQHT7Rn/JdiCdfWWHJohep1mg B6J3abZGgOgPwe4L2V+8cZS547kKRP+4rbUeRN/7q3oSRKt9fHADLP6f8SaI ZpMTteIA0johc5xB9Itjv8pANJvytnoQbXbRuBVEix36MBvMn/FmCSeQ5pjY sxxEXxKYtk44461j+qO09SAaAJRS35o= "],ExpressionUUID->"c78f0f99-99af-4713-8e3e-831db212afc6"], Cell[CellGroupData[{ Cell[TextData[StyleBox["Przyk\[LSlash]ady", FontColor->GrayLevel[0]]], "Section", CellChangeTimes->{{3.8697154978304434`*^9, 3.869715505718895*^9}, 3.869716190792079*^9, 3.869716461095539*^9, 3.8697166061348352`*^9, { 3.869716675999831*^9, 3.869716721422429*^9}, {3.8714486128875265`*^9, 3.871448617230775*^9}}, Background->RGBColor[ 1, 0.5, 0.5],ExpressionUUID->"551cbe7d-59fd-4546-8315-55133ac9b132"], Cell[CellGroupData[{ Cell["Przyk\[LSlash]ad 1.", "Subsection", CellChangeTimes->{{3.8697167693461704`*^9, 3.8697168012149935`*^9}, { 3.871448626288293*^9, 3.87144862799139*^9}, 3.871622575417223*^9, 3.8797474148986664`*^9},ExpressionUUID->"8fa7985c-986e-481d-a979-\ 4cc24fd63161"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", "y_"}], "]"}], ":=", RowBox[{ RowBox[{"2", "x"}], "-", RowBox[{"3", "y"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"rk3RK4", "[", RowBox[{"f", ",", RowBox[{"-", "2"}], ",", "2", ",", "0", ",", "23"}], "]"}], "\[IndentingNewLine]", StyleBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwt2Hk0Vev/B3ClKEUodRMllaKSsaT0SClDdGmUMuVqUkqD4hZKpeiSUCQN JCJRioR3QiEZM5Mx09nK4ezjnONwfvu71u+vvV5rD8+znufzee+99mIXD9t/ JouJiclOEhP731GTzB0QiUSYJ6sV+6k/Is+DvySQLxChKHcwsE7mHNLeaquN 0CJ0dYkrJokHQGeFlUsPS4SgdasT4wfvYZ1cQFNZvQg2D03rZD7HwbiLXRr1 WoQ9KpM2Gri/he3N78m6jiIc/jCrMqDoM+5tbjZffUCE3EFNWsOmAD/G+nrV 9ohwX379Xb2WAuw9PWWpoqUIj+8c8j43VAh7uw0xYuuY6x17pmXKfYXryqTg 7zIi+PrEzita9w1eFQEnj+RNwE+4pY66XYVg1oV6TtYEvJ47qUSWVeGZ5LHN V99OQGPy5pRB6WqUESuFR4kTWN2/vS4xpBqqaQq51WETYNElPvtDalAemjBz 05EJbHzqbNTtWws12+LkObITILJix+uWN2LjqWyFZ1ITSJadotLl2Aib2ym+ a6ZOwHXa3O4X9xvx7+fQXRaCcTQePf/xgEQTqnXsxny7x5GYbht9sr0Jl2cP WLCyxhF5r/zTjZst+PFjxkC+8zgCZeiNJ+Pa4O/6Li/54Dgi4pYP/KxogybH 4V7EvnFs+h3uMF/YhsDZbzYesxqHnHp0Jke9HUa2+0Nk149j7fX77Mt+7Uio iNdzlB2HiUFDYNCKDlwsNfIV5gkRMmfcxOSfTiw70Lur54MQy48cfmZwsRPV /aErKjOEqPQo9p0b1IlV07ur4l4KcbOvVO5WWic6tt9eahkpRLOBn+IOQScs iupKok4Koatz+N2hW11Q/uQxZ52SEKeX9bpaRHajTF7/nOE8IfbvnxY1I6Eb 3v8IaozkhWhj63VnvutGndT1e1unCRFglipd/aMboXui5W05Y3hcqPhNRv4X xFmFsifLxrCIlMRnB/5Cv4KidNy/Y4g31e48dKQHD462uSd4jeEu77tHwrke bPsYX5bkOYb6zEGXFv8ePHNaE5x2lLl/YD5kY3pwMHnrjLzdY1Cv2aP9qKIH FcYe0xtXjaHy3bWmXbq9eHeicOqsVgGGGkvp5MFeGKic0k6oF8DsbK9bOr8X 2T/mHTKqFkD7ToZj3NQ+fDI6kXHiqwD+G1XXWSn3oXSW/OHidAFCbxo/ybbs Q/tbx0/+NwQ4KluuI/28D1JCgTdnjQCLVkqrzbHox520+IQgDQEmBpaYVuzq h+w/1tWqywTosfIwunSoHwrlT9VtFAWwXzJVFHW6HypPzBpeTRFA9FUsUTay H/pbI/WPNPLhWKN8pKO1H07B2kONV/lY0hNYc815AN4ZYTe+X+ajkjxbknl0 ABEtI0r5F/m4XsIyb/UYQOmq9+aJp/i4erbAYvKVAeh+N4y7cICPl0kdF9Ki BiAhs3XvbB0+8u5/UU4sH4DK2ueUxGo+6EI6SKZ2ABscJK4JlvMxojBw92jz AE6nFr/uUObjuMHYvdHeATRaW01Pm87Hpnmm76+KsZASsjdnRwcPWjObffat YeFLZqatcQsPdWYrvgv1WOho+6tft54H5aI090hDFuZqNSss+M7Dh0cPPyeY suBb6ejRn8VDiWGycKM9C7Zyx1RvhPLw8MftheYBLPDCfAJBeNj36l6aejkL vUr5A9sMedAplbQvrmahLkHCqlyPB7WuwuoD9Sy8zb4r16rOw16TSQft21k4 1fkiWjCbB87SmVplbBa6tH+k6PeNQm3u+Vte8hSqP86flds5ivd3zn/dP5fC J1PHM1tbR+En8ypcU5FCrN2A/q7qUYSIh8zIWkxhv78YTueM4niZatoWLQrl lauqkkNHEeHAr91uSSHngKeubhDz/I8zT3hZU0juzozIvj6KJeKGpjE2FAJ5 JgdKvEcRJVfMKdpHYYuKXVeP6yi6xW6eiT5MQedlrOkpx1EcZN1xOu9GQUWv +wVtN4p/bPazTI9RmNju4T5l5yiK8rMnvp6ikOVxnV68fhSS0oNbbC5ReMEv 3ZekO4qtN+4ZNPlQiLwmm62lycxvAUvJ7gqFs/cfXiFLRiF7prHV4BoFTaRL HpIexR+rKAf/YApxMj/nP+jgQk6uagV5RCHMnkiub+HCzuDRH9XHFK4mPuE0 1nERd9Pk0fgTCi4mhysWlHExIBNfdT+eguqFvoDH77kwVgiLcUqmIF9g7mmc zsWul+seCFMoTJZNduxI5qLDsv1zSCqFzqSThkuechFpHl/8MJ3Cs9bhPwlB XGx26w+yzGTG19jduv0GF+HuDfTTLGZ8r3elfX5cuE3J+vHnAzO+3MXnGhe4 WPMoarZnDgVbh8awb6e54LqnBiTkUjBJNvRzP8GF/uXG4Oo8CotNxw+kOnGx lrU+QC6fgmyYg9lOey5SGo0Cln6mINYG/aE9XEhsoDeuKaDQfvGqrI4lF5Y/ 8/griyg8SZH88k6fiyeVqTcLiimE8o++3avFhcjPWy+ihILfttInoxpcaMvF NTuUUnBqD/ZZr8LFaPSW9U3fKPy9+vfRJkUufPMKREFlFIy9d+71UeBCsCy9 Xf87hUVz5LVzpbg4+ClIzrOcgozz2YUOU7mon7b5zJQKZv9f/ZghEtG4XDki FcL4t0Cf/1hAo8f+XI9cJYWf2+/3GNM0FBWCZtxhXB7Oq+n4Q+PcPZ6/WBWF vA67/KsDNM7HnbdxZxzroxRT2EbDteuA4upqCv8VX771TxONB0LpJVcZX1Fo uyBRS8P/lltcBeNTLsauLyponKzlPlOooeDw+qmNWSkNuxBz9d2MrYWTSX8h jYSqDqMgxpvMXVfdBo2X6hv6shlrRhbNX5lNw/ZxyZouxspdapJlGTSScvgL pvygMFMrkOP+msaZCK0MZcbCf/s7pF/SuFb+TbSGMVViUZEaT+PY88USGxi3 zE3J2fmYRtaoX/kmxmWHpV8ORdG4baHt9L/zOWmn7t8Np1Fd5flZi3HKeEWA TgiNfK8rwoWMYyy0PWtu0VDqvq4gwXjpDIvSygAaBmIrz/Ux80v+5qJa7kvj xc5fLwsZ6wT7eH/zppH3wBvRjLN3hFcXn6cx2yA58zhjE+lXGl9O0whaphOl x7j0e9HVghPMfvELj/GY9bP972fTJzca99mz17xn3Gg9qpPnTEOGW/L7JGOn WbJBHw/SCIgNTl3EuK9iRVfWPhqT1gnPfmP2i/f3gXtvrZj1nmmuJsfYT+4s K82Mhnz4joXJzH5LVgdtSd1CwzvZXIcwnrsrdyRxPTP/si2Fe5h6iZ1dZ5mg R6PhlpFVA1Nfy378jotbQ2PLdo1pexjr7VHZHbuMhijlkboRU485CutTHqrQ cJ/Ji05k6nVLnc2UqAU06rqoXTKMbfddy7gnR+NPnsKbYqbem+bFzLw7k8bO ubSzMmPnhgzX/yRpeEQWnXJn+uO0Xc+cW+McKPy0y+B/pRBib37+Sj8H+vfn X60qZOar5PLdp5uDX7oeKXym/2JbvJddauOg6f35Q0qMUw+l1J6t5SCt+K+j Nkz/ljnOWnssn4PY8c2p3ky/71ZZ8Z9bDgf1j77FeDF50Nxu3HM4k4NJr0IN PT5SGHD2jHR4xYFtQNZ9ayY/prnWcndFcXBs84BLeQbTz0t/W9uEc/D0YvOe p28pzPsl8cI6hIMGV7dFHm8oqLkZ7DO/zoGX8VPzsdcUTI8+zNx0hoOxyQr+ dS+ZfHJ3vqhuzoHEpugnMUxe/vzPISZ7CwdJNVurJ5g8NUy3/2S5iYPE3Zss 7WMoDNN7pp3S5UDsyUEN8ShmvXwtHrxR5mCz7ptNs8KYfAjTzdowPIILd6Wy lJm8jsnQaimjRtCQ2zVjuT9TD3WrxRx6R2D823XSSl8KaQtWmPm1jEC6VrNX lcn/Rc+VGgq/jADB+/RrPJn8yJzKs3o4gnKlb9cNnSkcaJqs1BYxApewRV5D DhTeC0XkdOgIPnp2Ojw9yPT7ZsHNsOvM+AEaahzmfdVa+ntevccIRjidix2Y 91tOa/06p60jUBtfpGlmSMFH/KWX5+AwBKQ6PFKGuT/KQcKpbxgtzcKpPTOY vF4zO8Kqaxj9Ms5R2tMpWNj/+2ZF4zCm//LTzxWn8Ndb68GfhcO4GyORlMBj IcNlxMUyZhg6biufFnWw8Dt/o/VSy2EcUuox3ZHOgrNfxdK6RDZYv6wd9bex sLfx8abWODbolV/mZZuwYKFzen93LBvW0aRzA2FBr1s2eDicDUnNhVlrDViY ZmY7IuPPxrZdm99O12AhdVZt/nY7NlIyn29cLs3CWGyTw4fpbJTW1Hy1rWK+ t3J/PYg5PgSf1s/naJsBZLetmJmi+huxMUPjrQv7sUTW2GR3LAvqxnL1ph29 eKMReLyzqw9X94qTB6d60FaUrrJ2LfOdmzCQWTXYjV+rInTwvgtqVZcrT1zs gtyVpLWakzow8Xxs99T6Dqxa+2fV85EWyKjq7dxu1o5rWwcrP1ysR9qx54Ht Kq1Q2J0aajevGs3lkavZGY14wy2aVby0FMcL694Y+tThefOvO/0BeVBfHOWY wanGIRuljObD8Xg6EWjqaF6BD1I+tZ/PxxFlq72XPn0uhn7npIX++0HSt05v 8XiRjyVDH/mGn0vIYerv5DmT3sM8rvG79f5qckOKO/uaXixMreTF6Xf1xDN/ f0xsYjQJcaz308psIduOX4lwYb8lX62Vpf+W7yDdmg9nd63OJ4OLFa5UR3cR 0xP6Ms39X8n5cyudQ+b2kL2yb0YEAeWkvkXW1q24j5zzXOHr21BNnC5t7JXc wSLSVxReOmrXkYKV624XTP1NzIy0p0ZUNxK16Tl98WZDhGPet9t7bStRzjlh OjWQTUbWdh0s2NpOxASTkzw7h0mljk2Dm3wnGbXJdShaxiHaulaHrPO7SLOe 44JlATTpmlNQYR3+i5zeJyun2sIl28mqO7UOvWR+ePf+Kco8sm/v8SeRUv0k 1f7Ji5GLfCIVuiPSvWmA7DPyNSvOFZDD1n8lXQqiSLrDSVVD4RipuSZmLqH3 m/Cktoh/2DNOzmz/yLMVGyK2VRvWKj+YIHqSL7gb64eI1IYZ+TmPJsjC8bJo YdMQyY9vsjwYN0FmuE4iOT+HiNbFS84PUyfIarOImxt6hojMoszg+UUTRLHw yHxDeoiUuOt0KQxPkA93X5J1s9nEeJp6qMwOETnQaRKpvZNNeGd4iqk2InIk Q3Ej25ZNXjd/fW61T0T4mqKOtL1ssvC128dgFxFx6RtcreXAJsI98T1Sl0Sk R+D0RfMkm2TGLTKSTBCRXySMvzKITU5J//makCwi4t6aT1j/sYmaV57ttnQR 4d2p25YcxibhFoeOXs8RkUdyFuEa0WziyY6+J14jIk2rc9eoJ7GJhv3xhXEN InKp5X1dXwqbdBSuTzL5KSJRk3MuJ6axyd8PGvL8+0VE53rft+VZbDJtcqL5 4j8i8qpk1tnej2yCE14/PnFE5N0eE8UXYJMLtdscnQQiclLZL9+tgE3+/38H maxQclTtK5v8H4rJyDo= "]]}, Annotation[#, "Charting`Private`Tag$8706#1"]& ]}, {}}, {{}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQDQUHYAzx2JKLruJ/9x/TXfbggtnD/Xq7Xizq1vu1 P+n9iY0ttS/3u4EVfN8/x+0x79q5b/aDlcd+2b/m6q5rTMfe7AdzSz7u/13c /aXW4vV+CbCCt/sPc5Y/WL7uBVT/8/3O7xtzsic/hap/uD9pf6Bzqsqj/S5g +ev7bx2fzavLdXe/A5h/fP+CqU/OvZx8dT/Mne96hBZp/T4Nk7dPe5K+VSJ4 534PiH77A9FLZ394NdUear69/dmzUX0Gh+wh8s/t1zWaTc64esEe6j77oDUb F02ecgOq/qN9QUf98lKtB/ZxEP/Zb5inIf2D64k91P/2FSdqK9a8fm5vAAkf e+nTAjNrz7yGmvfXfqvSUZ/4te/toc51+DvnnJvq8Y/2ALCttKE= "]]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, {{}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGAQB2IQDQUHYAzx2JKLruJ/9+921blzgf3hfr1dLxZ16/3a nyC6xkzX/eV+N7CC7/sl4+Ln9ea92Q9WHvtlf1bEc5sNC9/sB3NLPu53M5hQ Yif3er8EWMHb/cWJkeFFc15A9T/f7zjVLkm5/SlU/cP9Jx0M/rrLPNrvApa/ vv/qomPM8//f2e8A5h/fv8HltopS79X9MHeGfCiT6v50GiZvf/tkkaWFx879 HhD99j2dU/wN2KbZQ823Z+nutFlrdMgeIv/cfhmL2TaBaxfsoe6zd2qWDvo9 5QZU/Uf7eWtu1E/VemAfB/GfvUpo70xu7if2UP/bx9x6Frvj9XN7A0j42C+1 T7vWcuY11Ly/9vtmXtmYvPa9PdS5DptlW2arHf9oDwAIyKmp "]]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{462.6666666666665, Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-2, 2}, {-0.9009088547970725, 1.1111206143553436`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], "Input"], "\n", StyleBox[ GraphicsBox[{{{}, GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGDQA2IQDQUHYAzx2JKLruJ/9zecae5hVy+119v1YlG33q/9 DfNuXX1cVGHvBlbwfX/DrNIjWwxL7cHKY7/sZ/DVeHg9pMAezC35uJ9B7cS9 5hnp9hJgBW/3M4RoXlePTYDqf76foebsE17BMKj6h/sZAk7ccFPztXcBy1/f z/An/tmBz072DmD+caB+qykC4Rb2cBebRO2q/6QHk7dnuCVb8LZJ2d4Dot+e QT5r47w8CZj59gwF55rXZvJB5Z8Dzal6ynOVCeY+ewaHo5cELL7bQd0PlG+Z JNjyxi4O4j8gv07BtPihHdT/QP6b5gqvq3YGkPAB8j98O/D8pB3EvL9AvgbD i4L9dlDXOjAwTPBO4txsNxre9A1vALloJT0= "], {{{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]}}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGDQA2IQDQUHYAzx2JKLruJ/9zOcaGy+etzJXm/Xi0Xder/2 M4hMPnL2mKu9G1jB9/0MFl9fi39wsgcrj/2yn8EhtTPA3dYezC35uJ+h4s7j B+am9hJgBW/3Mxx4ny7SpgvV/xyo3oTf9IcyVP3D/QwLJmT2lknZu4Dlr+9n KAiQn+YkaO8A5h/fz5Dg3bHHhs0e7uIFBxd8jfljB5W3Z3iw80Lwh492HhD9 9gwZsu9Wdjyzg5oP1Jd/oFD5DlT+OZCvET6j6qId1H1A/jZx33lHoeo/AvkB vTaLdtnFQfwH5G9YXxO5wQ7qfyD/wb8zTEvsDCDhA+QfuLksZwbUvL8gdx6c u6fXDupaBwaGhn9r+ZvsRsObvuENAAwlJoc= "], {{{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]}}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{461.33333333333326`, Automatic}, Method->{ "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-2., 2.}, {0, 0.005968942624953066}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], "Input"]}], "Program", CellChangeTimes->{ 3.8697168047601957`*^9, {3.8699015362353296`*^9, 3.869901655762166*^9}, { 3.8701037352671075`*^9, 3.8701037368175106`*^9}, {3.871014192560913*^9, 3.8710142620168858`*^9}, {3.8711031888751507`*^9, 3.871103214106594*^9}, { 3.871107708489658*^9, 3.8711077866741295`*^9}, 3.871108552034906*^9, { 3.871448649190603*^9, 3.8714486509427032`*^9}, {3.8714487068409004`*^9, 3.8714487830722604`*^9}, {3.871448965648703*^9, 3.8714490173916626`*^9}, { 3.8714512727686453`*^9, 3.871451296847022*^9}, {3.871454723513014*^9, 3.871454811128025*^9}, {3.8714559095778522`*^9, 3.87145593681841*^9}, 3.8715214648260136`*^9, {3.871542507355337*^9, 3.871542713600134*^9}, { 3.871622445219776*^9, 3.871622524091287*^9}, {3.879747534495507*^9, 3.8797476000312552`*^9}, {3.879749951885144*^9, 3.879749983594767*^9}, { 3.879750137397271*^9, 3.8797501474491253`*^9}, 3.8797502019347563`*^9},ExpressionUUID->"93c030cc-d8e3-481e-bb67-\ d7a2b2f18e17"] }, Open ]], Cell[CellGroupData[{ Cell["Przyk\[LSlash]ad 2.", "Subsection", CellChangeTimes->{{3.8697167693461704`*^9, 3.8697168012149935`*^9}, 3.8697168979185243`*^9, 3.871107691826705*^9, 3.871448632742662*^9, { 3.871622582984656*^9, 3.871622583952711*^9}, 3.879747422099078*^9},ExpressionUUID->"a5f0ea50-e8d3-4c91-be56-\ bfc3dec97ef4"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{"y", " ", RowBox[{"Sin", "[", RowBox[{"2", "x"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"rk3RK4", "[", RowBox[{"f", ",", RowBox[{ RowBox[{"-", "Pi"}], "/", "2"}], ",", "Pi", ",", "1", ",", "9"}], "]"}], "\[IndentingNewLine]", StyleBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV2Hk8VF0YB3AJMySFN1ooSYo2CUXpuUW0UNYipZIiiRQttqJISLKUUkK2 7FtEdGTPErLcmbEv2c2VZcxY35s/xuf7mTtnzvJ7ztx7NlvYG1zj5uLiUiZf /v2/eu6u2txmDkpe+vdHgA4n7PsqCQ6a/3MzYo60Svj3ozJiHNS7jNuZSXqT el/5gdUctKjXFEQjTe3kP6UrwEGcX1xDeaQnHu+pu8LDQQedMlyDSLdKGxve W2QjdzWJ0xakS0udcV82G6mIPLkoRzr1eqTZxwk2GhjZlzSwSMAbanln1igb 6WT67P9A+nHiyNXKfjayPznAfZK0jY7wYFsXGwUE/VjJXCDAkKli+5fBRpOX Q02ekz4UeGGct5mNwj1HezeQllX0dFxfx0ZVeRfSY+cJYDvVumqUsFGg4oZV H+cI6BGf5DIpZCPt7PpoIdLVeWu9bHPZaKHilrPTLAERC1dfhCaxUappOns7 h4BnH58LJ8aykcMDiSgnNgG3j6SFfv/IRtzXFwLzZgjQ8Jr9MBDMRnOFu05t YxGwc5uU9PwLNvraHi2uP02A2M9jcat92GjXXtqeO1MEDAq+SlV1ZaPavfrH 300QEBCyDflZspHinUx1TyYBD1R0NSLN2eiugKD/9TECrtDuVGSbsJHtuimF o6MEKEl8r2vXYaM1u3Oedg4RQP9k1LVHmY2k1z7yzOwjoPiYs6XmHjZqEL6f pd9LQPLAx0ETOTZ6uDv/+GA3Ae47RsY9JNnIjNIeP9dBgEyWx7ImXrK9HWoO 32gErDSO9xpcmkEDRMf8GpwAFquGf4Ezg46X3V6waibgp9paEVnmDDI75319 ooEAu+JU6QctM8jVXmpDVBUBeQ2tGhLxM4iJ9I5b5xMg8i30dEbkDBKb+Cws +JUA25gzplrvZpDA5tFlcV8IkLpfYnf7xQwqa3O4XpBOgLdE0tvSuzNIMOxb yt04AgysnAlbbAaJly3hqwLJ8egpzS5Tm0FO7pIc8RcE8Koxed7sI6+XmX8q 5kvAV0GL9T9kZ9CFW38J1hMCNmaeOLZm5QwyTnjx7th9Aobn14YX0llok9Te tI0XCNDs/x1r0MhCooZav1+aEPChzj99oIaFysVPZs4YEaAXzVUuXMRCTS7P UJIuATnag+PX4lgoSTouNfYwAU+CcrWE7rLQTMwrav9GAiS2n50wF2Sh4LX1 PqU0Jhj9MWq/zEe+n6IRZN3EBP9ow0oLLhZqbzVR5a1nwryEfsT1qWl0yyLs /vYKJrQL65y0a5tGomEvTMS/MCFi7ki0W/I00vrUMRD+kgmb6nYZvNeZRvw5 Jik3gQnS93gz6f5TSPrU8R1hfmNwg/Y1m+M9hRoGlGWyvcYgXc02d53HFLrl m/6h6tEYwNLvAlOnKZS8atvugbtjcMEnsoJ+cQpFBI/4dJqNQei7g+303VNI XStCr1F+DKjIgcqon0TfDm/bwykdBSalw5zx3yQ6XBTKahkZgQqnyvR5178o jBJxidY/BBqtA6LnuMbRJcG/l2/3D8BbVcUDcRWj6FbqfbGV3/7AAc0B6cQP Qyhi5uVerexe2HCYT2FjYj/Cbbe4aHK6Yd348WfN93pRpqttyG39LoiI3rO1 x6YXbbbO2PbtVBfIGIuVMM170ZvwF3r8Wl2wO793kaLdi3Q+aVxPV+uCo0/d 76mJ96LqDbdy5WS6wGZt9rWPuT3oy9zvbcFEJ+RjmzRvsLtRSgfllJdGJ1x4 Nc218LALmQ1Jl1gt64ClF8d+HbPrQlfdVVK42O0Q7RsaHmDRhTKDnqVHMtth 6ImyitSpLhS9I2E5q7Ud7t1zuqkh0YX4X9t2Tee0w6bc4SRRt07UdcXL76Rd O3ifGjbexdeBLGKwaO2eNqjR9B3/zmxHtHzdmhJ6G4gelvfTw9vRnT95QtoN bRCpYFN0N6EdXWjObLUoaoP8NcPy+Sfb0ZnjYQFERBuMdQ4tab1sQ2Z+OiIX L7aBkePQ58trW1HhVrFmr85WMPNjmE8tMpCzA1fUYbwVLKKrRX3+MNDyr/W5 S79awaE+xS0tk4Fe12Ml7763QsDOO/qLOgzkURR4SCmiFSr7ZtnhHnQksSKF f8q8FdSNBY/jwzg6ooCLRvUzQNN2Yd6mAUfHnF/EXelkgM4TZsZiLo7MnW9a y9MYcD6jfoOsF46c7SOcmn4y4MHKUMJxE45WHvV+65vCgMwyyTciRi0orDx/ k/s9Bsiq7OnXLWxCLeKv45yFGJDwfp9EaGwT0jn+PewzlQFyyw8YtL1oQqOf pF90cjNgZz323ca8CTGPEg8uz9BB0cbg9bOlRvR+KfloThcd1COctH4caUTT U0d+pWfTwYivIE6pvAGl1H9Rab1ChxbbojaX1AZEC3gfNXiBDucaS0VKXjeg b2O14/Pn6HA+stZd36oBtV/VP6B2mg6X1TrP2lEb0MO2ZH3KQTrctOOmJJys R57iW9qH19BhecqrXyoRtWij7p8/9fU08PlyyP6nTS2qlb599UoNDQS/D6y6 sL8Wve1yxzkVNBCrU9f3qK9Bm4nkiKOIBtv/DjVWc9egEJGtvvtSaaCjfJR+ 2aoKZZyp63z1ggb16mMPJ/dVoexAoyNRz2lgrBW23purCqkWjj376kUD83NM s6S3P9G63XJFi240uP3wXcd0dSWqUktCQ3Y0CCmc6PVVqEBeU4FiqgY0WFv+ 4ankQjmSuL3vdPlpGnz4dXxr+s9y1HcCnTc7RYO4zojrzRblyGx5AfO9Jg2+ Ljs1tCm0DM01Fg247adB+7FPzGxOCdJxX30mZyMNLE6ffqldXoIK9jpcK9pA g/6znD2MoBJ0sELy6O+1NBi3OuOwtKMEBYUQJ1eK0oDbd27yhHkxEghlenZR aCD7y5DTUVyEBIvVW2YncNiy9OmcRWARKg0ydvQfx0FKYerLn4tF6NcQ9nQr EwcVGbk/tL8I3Xf5ybo1RL6fnIhPXvyONqkHiJp04bBe6FTILLsQ3bPZvGtr Bw5rbo/oLQspRH7527I4rTgIKO2sEqoqQL6ty7jzcBymv6UUyKl8Q8Rfr7eB dTiMS55+qNCQj0JeHeZ9W4vD8COm8n7bfFTs5EVLqMahS2NPmmZ0HprUdsjq qMChqjo96pLQV1STvnbHpyIcIlqzvEP7s5FZi1hSQBYOYepGGu89stG9zpHT KzNxCP44tRQtkY1c3fgNgtNx8Lmq/DDdIAtRlp91/JKCw92RnJvV3zPQ2BEF SYMEHOx0z23/bZqBvPbvT1sRj4N12kwfbSod6V/d9aEmFoeLdw+Y98uno86X V/0sP+HwknU3int3CtI83xI3GoHD0/zs9astkxFatk2o+wMOzu7TwZLvkhAX 8eZX23scLPnuex/gS0TGP9+bDr/DwbQqd+nYoc+owODNlvm3OJwOYD8wvJOA 4i48OraG9AEx55t2HXHI0Hfh5cU3OOxi5Pe5/BeHTvMLfvV/jYN0xNzF5ydj kfAPtkpJKA4rZd30YnI+odPr7x3QCsGBe7jwZ8ZoNNKaDMwPCsaBnbJ4FElH o7dOEUH9QTj0KD9WZgREopVB3zViXuGgN5JjR4n9iAJyh5bESbfb3LpzfmcE UvIslwgKxIF1g/GQ62A4YhvxPXj7EocnQ4FuhsVv0dMTsjmypFff0PaIOxGG mgscjPIDcJCzzvbRMQlFbdXiGVMvcMgZsPH/2BmMYvjU7cNJH7XaHDhxPQjN LEq/OE76Vz8efIwZiMpPZwnM+5PX10js2TsSgNq06QNfSNdVP1fBOX5IcspD 5h7pwSqWuhv1Ocpf877oEGnuqqvHtoh7I/ttawv4SW/4Wa/zc+sTFHlhUKzd DwelSnUje6XHKDSKqyGHdHiAca68tzMKDD87/Jp0rf+e8nufHNHfhG4LN9JL a0QTvTxuIcPud2o2pC1FKiokC66gd2vcHC6Slj44GooztBGl/inlHOlTjRqT FWracMQoff4saTu2ROe6kCtg+nFJ79/1/PPWPzxMb0G1lSPPv/Z+P2I0OL50 BFdJEfF/3xfpwVWy/Y4zJA61+/zrT+4R0fN28o+hM7XD9F9/I47GGVRueAKd VEnfNtJPNVRPSa/0Bj+dT+v+jfemZo2G66IPlDxzo/6bD4Njlw61EH6g6ZF3 1om0qtaEkkJ3ALh9vc7zbz4DPxWLHRsKhCvXXgvPkV4uIyg6cSUIVB6YuWuT 63EvxnjVR0YwmLytOvmO9LDMxxU6hqGwsH323iTpi7GDFE71a+Ac5l5uSK63 ZpwLl2HhW3D6y3NwK5mHr7Jl80vK4UDoHRh4Q3pHvBAnOfU9UAu+TK4m8ySS EPWXL/IjXFoluluMzNvRkGmWqX8kXLVRvRBN2tVovVP68Sj49kVlRInM63jT VYeLP6KhuMx45y0yz/KhPkSW2ydo+ljdIULm3dI45ZaAWgzwhRRNfCeNN7Nu 5GbGguanHpAn6+V7y3ML4ZgEIIQ8HXXJ+mK/Tu2yuvwZXL0vHZAl63HvuUbz 7xKJ8D334iXecBxicAmzm6FJkC+cgreQ9etHSzMs804F/lrfB+WRZHuJp5YE DNNAfluk/lAUDg++3zVOWJUO/Qqf00XJ/SEpcNUyZms6yOcKcT8i9w9hZW2T h46ZoF73dz4tkez/xjW73zMyoYRmvnpVMjl/lN7lCMuCFZYjyU7k/nSf7p7G szIb8JItT0zJ/avdLYcvMPYLhIw0prvkkPV4/Wlb5oocCPQm1ol/JetPzyCz 2SEHClh/VuXn4aAhzby44XAuhPXZxIgV4vC5fOuXuJavsPnzE3f5UhycVoVe LaQUQPuE493CRhwC2BaqXbcK4I/Fm5GGZhwSuhVWLW8qANkvSZwxcv9mZNXk H48shKrjqoxDbThgJjwiTQcQ3D5/DCn/wcG7XvXytNIPCJ2MzAxh4yBaJlXN Z/0DtFg4Q3qOzHceRWVt+A/YLCwb83UBh7zo5hUHlxWD7/B/knPcNBh1dMh9 XFsMKZrLv7eupIHBus9CgtdLgfnN8LbgVhoM2924nxNaCkPa2ULd22jwpFSu 63JZKZgv/LlYIE+DbPvEjC8yZWB3M0T4mQL5+1+eZHSptwwq04/32B6iAeNO 6rvMyxWw9uGdX87GNLhSkyVralYFy95Oqsb602B2s+PL5X5VIPbB9oZ+IA2C 7iuxU/Kr4AAj0YInhAbF0l9+cq+vhjaN1i/u4TSQeZhjm0yrBp2QOVZpIg0G t+ZlLhnXguK+x3FhVeTvOVzaZLi9HpzW501ZrKJDqY6dquzRehhefx5O/UeH OlM3Q45ZPQiHLos5uI4O/XfDn318WQ/ZIVuKlLbQQTQBJ0ZY5OdDV1/z2U8H u9V6RU/LGsDwOb9dDnl/JdONXcmxaIQGpcVx5QI6KDDPuDx3bYRJanb9lmI6 HJwzD73wuhHW9vH/XVdJB4M1bj+5qxohMNCGvbGJDo9O5O09s7cJzhoiDf9R OjAy9nIPLjXBPro2fWojA155Sn9a96EFhBc2afD5MuDynLm5Y04LCE5Sp9oD GaDgGL6urq4FahRsCwvfMODXtf8Cn3LjECvb8CE0lgECJ/jcCKt/++zazLgf DPBcNXy2TJEGivb8gmfmGHDnfYaAA9mvqmyjk8ixFQxysDuVk20QYXVjl+7j NojvvJFsv6Idlnb1Crz1aYN5anC/2JZ2iBKzkRoNbIM4sz/nrxm0wwlHnun4 qDbgcPlqcGe0w+FEf917JeT9/anG/w7ZdYC9pdjcLWo7MLuu5aYNdsImvrGw qjftUOZ1zL3arhs0G3U999d0QKDfXqEIl25o2HZDZifeAedfSUbc9umG5htm h+R6OoD5frpwTXQ3XJj2qDrE7gCx7NiFS83dMFhyT/unTCdc7+F1mzrYA483 bB6696gT+KDcRZK/F+zrNRQDJLtAi6310P5TH0xteUAP+9MFni4d+p+iBqDo 0o+Vp7x6QPH+Fr3qwGFYrJO/M3aqDyryNXnS0Rhkpo5eP3G5H/wpiydFLoyD iVbayJTFIMQ3VzDl2X9BobtEabXPMMxfso4t9J+Ex0KiVdiDUdAWWlz1KWgS tKTLnefdRyGoINjZJ2wSZGVn6rK8RmHbOnTGMGYSBr3+nFgTPAoGv9fMDn6b BJTTnBidMgqfNUtO/zcyCc9cTCK6ukfhrNxGts2JKdhbtTP1i9YYROFZFnpn puDaNb03uM4YjHqdqFU2niLnGVedMhgDjx7HaK4rU/Br0CFA8tIYJIdX67x+ MAUHdqql7rk/BtxCD6N+xE+BwrnxN6fixiBtovHkWr5pkFieaL+Xiwm+ps27 3QSnoTQyjy7MxwTLohaRHpFpsBhrFhhZwYT1AXRG0qZpUD3wLvKZOBOeynXa gOo0XAj6mW69mwkml4d9r9tOw/N3lXtLzjOB+xdXdfbvabh4VWMgKoUJbUrc aevo08Ck5vj4ZTIhN3x5sHvnNLxxjp6yzWWC7Q0+s+Oj0yDV90tI/AcTcB7B kVZeFsRgAk8oTUxIPii+YrkqCxLSm44asplg/HnXKf2PLNgm0ChnpUaAwaHh 0ydiWZCW8rF2Tp2A03VxBkeSWKCYphDkc4QArelN5/fmsuBXSayN73ECVI6I 3BCuY8EtvW0tu88SIEZneTcssmBOwDCaZU+AiG2W70+eGdBa775rxV0ChJbs A34IzIBv3PIg8XsE8G0dCs0Qm4FwjfgWcVcCWLdbY17tnoGX1qbtX54R0EIt KtY3nwG5C7Yulh8I+B3uWn7CcgbePt5eOvWRgF+7VauO2MyAn4jiZ9doAsqN Mhv23puBhl5LtbvxBORExnQJB8yA+GrVDXPpBGTuu9LHHzIDsynLB7WzCEgt lxxc9m4G7B2SVPy/EBA3+pr4GzsDz7ft0Z3LI+DNgeeLDYUz8C6qWuBuMQEh 1ce4q0pm4CL39CuXUgICzbn5in/OwJWmC09cygnweeqyMrN5BjJ2Try9UkXA g/pbEkFjM+DTyaNT3kCA41V5Kd/JGWC4RzOeNxJwm9W/xZMzA1uO/Piu2UyA tcTlHXd42WDzYpl7JI0AE2sDNQNJNmxV/hBGdBBw7Ox52Z1b2NC6v0r6ehcB ipoWInxybLj0cES7qZsAQak7w3lKbBDqcjZ700dAEf7q3WYdNtywPuH0dYiA lLK33nP6bCj2144ZGSbgXVbUneZzbHinqnZZbJTs38uMk8+vsqE8of6BAZOA bdoNs+PObGgn5pdfmyDgP2V6f9VjNhhb+jsYTRLAtaX7d4w3G+q/My4fnCKA sTieaBLEho/zTERME1Axyn6tGMaGeC+7XYUsArIZXE8EI9hA1ZJa6zlDQEDO arOiz2xolBe4MsEmwCVmrfa7NDbEPD1b+IFDzkeQ1D7HL6S9FoKwWQKMH2/f dPobG/gTt3YzSB+1U1ix/Qc5/hqueNs5AvZcODCzrIINEdtqeqdJS5zEeltr 2LDTtP71vXkyX1v1vr2ksWFVcscF8wUCekVN4m90sCGcJ8uujHT9ssvBGn1s EI41mtqySEAhYfVIcpgNJQrHxh6STmy3vzlDsGE6R9i04t/5dPX9cw3TbFie bbBfcImAp3mPNJLm2PBAJPnZcdIO8c/2eC3jAGdH7QlX0uahLzdconBgXdVt t3jSp568oaiu5MB/2y5KV5E+4PBxUkSUA5eYVw/0kd56Kb5zdC0HtqtboGnS Irpp1eUbOZAUjeUukl5Sy82NlOHAPanJTf/O60e3o0/O8hx4Iv+QwyJNF6t4 aaTAgUPx7Rr9pMt56lx2q3DgMqGyVEM6a6LFinqIA8W1cTuSSEd2dRj2HOHA vPv5n49Jv/jVDwXaHBhO96XpknYuYO54rcsBaU8XUxHSVoks8duGHFD1cNX5 Rc6HUdji8pOmHGAnDWZ4kD7izTe+5RIHbtrJ+u4kvdtRqG3BkgNNUfHNv8j5 3mAhVonbcMDTbyjEmjRVb2N2xm0O+LQ6VnLI9ZpWl430u8cB06T2256ke3bs 9r/myoGjriUB3KTr1qk8AE8OlCs3SDuT611AOWy5zocDf7YU7hoi8xHaq3uo NpgDc1+PJKWQeRLx/REl+44DXmzN/VNk3gIUlCmPIzlg8PVKvgJpHzeJ34op HFBcLE30I/PKKxO43z+LA5scotYnknn2rFr+4U8eB1arlHh/J/PuIj5iFVbO gTPiaaY/yfpgF5rX/q3hwMQT/xL0l6wny9+Kpxo5UEtv3pM8ToBdRt7CQicH nkW4i1mR9XXllE/wVQ4Hjl3WO3ONrM+Ov3PsgiUOKPlpL60YJOB8mL25GN8s uOzrLUroJ+f3z1m5nyKz4LqvyqO0lwDtR1vR7p2zcLad+6BXOwGlW9/K+CjO wv2Ci1/bWgnAagR9uw/MgrXc7fPyDALU1k0ZhRybhSKKlXhCCwG7soqHOeaz oGsYXryrjsy3qYqe4bVZ0PfVylKpJUCWK/FL8s1ZuHbUp1O5mgAp3VePLz2Y haoXZjNiFQSIDlwSK3s1C3ni5x5ZfieAs37hSGDpLFi6vubsSSLg3o/b8UNV szD2KFotIoGACas+QY2GWYinbhznjiPzml2NT7fPwvm54Mq0SAI6T7+7ZTYz C7d6/nx6E0pAmef+t7Lyc7AQbtb8yY0gn5eubxRVmIO3kNGQ4UwA9/bQT0vK c1C+7m5B7n0CDtdOpNCOzMGBUrlbSQ7k/i+eWuxrOgfaoxtSFK8RkJAsM8r0 mYNIF0/j0pME+LcIQ+7AHLzeJ/lVdDUB8p+x0k9jc9AqnDWxTZCAShf7E4GT c1D/LSJFiUrmYXOt4Y2lOTDtlMjbz0WA+00f6w3i86BlLJHXRzDhNtfSq0da 87Dp6HrBzlomGMqP9mnHzsNrl1ebXJ8yweOLd29W0jwcP9opoPGICWnY5p5N mfPAuiM1t8yZCSvOne2c+T4PFw9V8VvbM6HkSRE9njYPGWcGC5pNmbCvPeQX RXABtjJLPQ7vYoJooPrXijsLoCr3w+vRrzFonA7w08YWIXn3Rt6E+VGQTun7 rKW1CHosHiE51ijcsVSrPKazCNIr6vhjiVFY3fiHR9NkEawqJ9gvekbhdPoh d+z2IqSnmgbIVI5Clc3wbdXIRTiyed7yZtAoFHceO7uDawmaBjclv94yChk/ 56VWFS2BuGi3+Sa1EehLjrTc/p4Lw1Y3nO8/MwRDfGrXD1gvwzZanky4tG0A JP8cuJQsy4159/goftzxB042p3qtmubGfh9y/n5EthdCtgR+SUPLsRX6ugqx F7phJaulLcuVB9uZs/P3fF0nRIzJJQ484sHc1BOvG5R2gsIf1/sbnvBg3Pti jdO/doJRk7TIk+c8WG9uxHGvqE54n2mnbfCaB1vmmxoffLcT5O35MsfTeDDW Yy5TjXWdoDWo/GxXLw82WGzvNG3TAY8ZIXvjT/Bi1p/7ksu2tYO0dVlAjA4v lneVbsHYSN5/T0+PRJ3hxaIZE+6sNe0gIHwu7r0xL+a8ZmJQk6cdQrTXbQi6 wovtDxt3V+tug4TsDzxuD3mxLatPuPu8b4P6gDjc4DMv5hkb456ytg3uSOBK esm8WBFXn23q6jZYk0gJ0k3jxYY0tuXkUNvgfJm1zvEvvJgA8825dnYr9M3J /1D/wYtRbVPLPemtwLZOS9xO58X6d938vet9K2zW+Oq2SOXDrveeWMO1rRUO uQvVja7gw3qqT5QISbXC2TxLqVYhPsz2ebKdzLpW8N8jXJL7Hx+W8zYh33IF 2d4GG6qDFB/meyZQRHWcAfVTG4J79/NhPGwPMYVvDHgc9yih8joflujh3qx/ lgHh3c2cnBt8GLepV9JhPQbkSOw8FWvLh12VkrumeJIBo0G0MY87fNiP0IZH uw8zwOTR3n0H3fmw6eLjag9lyecxk97ClFA+7GwB99I5Nh06+bUbg0r5sLDT hc+VouhwdLNhd1EFH3aOKt/vG06HmAOXCGYVHybp1npoKJQONlb3V5xq4MME OdZNhb50YJXGayzv4MPQumy/ckc6rHxMzb47w4eBoZO48Uny+ZL1M8RInoLd PLEUZD5Hg4iVLdGeuyjY6YXouQwWDbi29qSnK1AwpwW66soJGpQbztYI7qdg MT1+iq2D5PN9hjxvmQYFCygipptaaHDD1s9J+SIFU1w/8etwNg3e9OicFQuk YNLZ2bp9jjQQCFSZWhlMwRRqRu7bO9DAXV0qiPc1BctaXDy7zI4G18Mma6fC KVhxnreCqhUNlE6/O9YYT8HGg8bVOKY0qM8bUApEFKzjr8lSHkYDTauG38+K KdjLZt916eo0yP3v2+1HZRSMp+lEW7IaOR77gGS7ago2IPXEJF+JBre2Ksvo 4hTM4X2m+FY5sj+vPEUFCAq2wzFYVFWU7M9h24xlExQss8/lytvVNPg7YnyG M0XBVvY36HAJ0YCmJec3OEvB1ovt5HRTaRA/X8ddwUfF5IOTXk8t4qBpLTnx ZCMVy/ebNj07isPXNZRAl81UrHrCaZ/UMA47SsZ33ZWhYndXhEeOD+AgsrH0 hoU8FaOqB++L7cWhu9GmG1OhYh/2/Np5sRUHd/hav6BLxeo0p6YpNTg8rw0q 19WnYs4GscG8VTiEmN0q+GBExaT6CJMVlTgk3pdOUDejYjf25p/bU4pDS5r/ IzdrKrZ/6fl/9AKyfXUrp9qbVOxA7IV28W84jFYfuSlpT8XOeDIqzfNw4B5k nS10omI5BoG8vDk47Ja6snvBk4phRW58WWk4qKYelNH1pmKaU3ubFVPJ8R4S W//hORVTfqdZnJ+Mw3mTal71QCpmi15O93zGwTtQud31AxWjjIdlhcTg8Grj 6saaSCp2UVLA2vgTDu+ThyslYqjY+1zF/Rujccis/JhdkEjFfDOoMpUfcejg EvCfz6Vip4UmdrqF4zAU0Oeh842K+T1USXZ/h8OUBLr//jsVWxampOHzFgcB Vcerh8qomOSccG7WGxzWVJw29a+kYqE8BsHNr3GQMpY701ZNxXR1V3ovheKg 4tCh5vqbiqmNNqXcDMHhyNJXhZpmKrYr+1xPSjAOOi+CZSXoVGwg8uhOdhAO Fp+PixR0UjGHIrOlf+ftt/ZvoQr2UrE4RTEfCukHZQsLZv1UTOak/tY7gTgE dGcOzY1SMRb34/eXXuLw1v5F56lxcj1r1tzrCcAhZsGqOXySil0OuH31Fuk0 v6PVIywq9ljN2pKLdP46yR8HZ6lY8FP8wb/z9rL4mRy/BSom0h0eeZh0vfLv 5FYufkzUO7R1yB+H1pLk6B08/Ni3m/FyH0j36z8Lc6HwY5k6ub4mpP92Xgmo FuDHHselLG4gPX/r0NMNQvzYSJ6T14AfDpR5MeebwvyYht/Cxm+kRXz/2n/7 j5+sd+Xqf+fZkmtrrq1Yy48p64j4OpPeHhdnZraBH9Nf+9zsOmlFJQ/9pI38 WIpZMJwnrV5spj23mR+7R+xU+Xee/j8Fln3u "]]}, Annotation[#, "Charting`Private`Tag$13526#1"]& ]}, {}}, {{}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{-1.5707963267948966`, 1.}, {-0.9817477042468103, 0.750492085343919}, {-0.39269908169872414`, 0.43538591097804513`}, { 0.19634954084936207`, 0.3989463877561537}, {0.7853981633974483, 0.6319069077765478}, {1.3744467859455343`, 1.0009022574225808`}, { 1.9634954084936207`, 0.9171319742495161}, {2.552544031041707, 0.5320593619754609}, {3.141592653589793, 0.3993063400957187}}]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, {{}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{-1.5707963267948966`, 1.}, {-0.9817477042468103, 0.733801901501421}, {-0.39269908169872414`, 0.42508482109621376`}, { 0.19634954084936207`, 0.38135941127356565`}, {0.7853981633974483, 0.6049637650959425}, {1.3744467859455343`, 0.9596751679913953}, { 1.9634954084936207`, 0.8609603046640487}, {2.552544031041707, 0.4987465368108618}, {3.141592653589793, 0.36598115707905887`}}]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0.3678794411714458}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{368.66666666666595`, Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange-> NCache[{{Rational[-1, 2] Pi, Pi}, {0.3678794411714458, 0.9999999999999907}}, {{-1.5707963267948966`, 3.141592653589793}, { 0.3678794411714458, 0.9999999999999907}}], PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], "Input"], "\[IndentingNewLine]", GraphicsBox[{{{}, GraphicsComplexBox[{{-1.5707963267948966`, 0.}, {-0.9817477042468103, 0.016060390997615692`}, {-0.39269908169872414`, 0.00948705602582156}, { 0.19634954084936207`, 0.016795504592114152`}, {0.7853981633974483, 0.025376248063914364`}, {1.3744467859455343`, 0.0382473025901755}, { 1.9634954084936207`, 0.053360125854407636`}, {2.552544031041707, 0.031155814370695145`}, {3.141592653589793, 0.03142689892427636}, {-1.5707963267948966`, 0.}, {-0.9817477042468103, 0.016060390997615692`}, {-0.39269908169872414`, 0.00948705602582156}, { 0.19634954084936207`, 0.016795504592114152`}, {0.7853981633974483, 0.025376248063914364`}, {1.3744467859455343`, 0.0382473025901755}, { 1.9634954084936207`, 0.053360125854407636`}, {2.552544031041707, 0.031155814370695145`}, {3.141592653589793, 0.03142689892427636}}, {{{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}, {{}, GraphicsComplexBox[{{-1.5707963267948966`, 0.}, {-0.9817477042468103, 0.0006297928448822931}, {-0.39269908169872414`, 0.0008140338560098104}, { 0.19634954084936207`, 0.0007914718904739049}, {0.7853981633974483, 0.001566894616690906}, {1.3744467859455343`, 0.002979786841009968}, { 1.9634954084936207`, 0.00281154373105974}, {2.552544031041707, 0.0021570107939039573`}, {3.141592653589793, 0.001898284092383462}, {-1.5707963267948966`, 0.}, {-0.9817477042468103, 0.0006297928448822931}, {-0.39269908169872414`, 0.0008140338560098104}, { 0.19634954084936207`, 0.0007914718904739049}, {0.7853981633974483, 0.001566894616690906}, {1.3744467859455343`, 0.002979786841009968}, { 1.9634954084936207`, 0.00281154373105974}, {2.552544031041707, 0.0021570107939039573`}, {3.141592653589793, 0.001898284092383462}}, {{{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9}]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{367.3333333333329, Automatic}, Method->{ "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-1.5707963267948966`, 3.141592653589793}, { 0, 0.053360125854407636`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]}], "Program", CellChangeTimes->{ 3.8697168047601957`*^9, {3.8699015362353296`*^9, 3.869901655762166*^9}, { 3.8701037352671075`*^9, 3.8701037368175106`*^9}, {3.871014192560913*^9, 3.8710142620168858`*^9}, {3.8711031888751507`*^9, 3.871103214106594*^9}, { 3.871107708489658*^9, 3.8711077866741295`*^9}, 3.871108552034906*^9, { 3.871448649190603*^9, 3.8714486509427032`*^9}, {3.8714487068409004`*^9, 3.8714487830722604`*^9}, {3.871448965648703*^9, 3.8714490173916626`*^9}, { 3.8714512727686453`*^9, 3.871451296847022*^9}, {3.871454723513014*^9, 3.871454811128025*^9}, {3.8714559095778522`*^9, 3.87145593681841*^9}, 3.8715214648260136`*^9, {3.871542507355337*^9, 3.871542713600134*^9}, { 3.871622445219776*^9, 3.871622524091287*^9}, {3.879747534495507*^9, 3.8797476000312552`*^9}, {3.8797476328081303`*^9, 3.879747649872106*^9}, { 3.8797502731886377`*^9, 3.879750294281597*^9}, 3.8797508898725834`*^9},ExpressionUUID->"b8430853-1e50-4a7b-84d0-\ d63343373357"] }, Closed]], Cell[CellGroupData[{ Cell["Przyk\[LSlash]ad 3.", "Subsection", CellChangeTimes->{{3.8697167693461704`*^9, 3.8697168012149935`*^9}, 3.8697168979185243`*^9, 3.871107691826705*^9, 3.871448632742662*^9, 3.871622589864049*^9, 3.8797474263943233`*^9},ExpressionUUID->"4cca3cd3-d091-4023-89f4-\ 0f91dc47decf"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"y", " ", RowBox[{"Sin", "[", RowBox[{"2", "x"}], "]"}]}], "-", RowBox[{"y", " ", "y", " ", RowBox[{"Cos", "[", "x", "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"rk3RK4", "[", RowBox[{"f", ",", "0", ",", "Pi", ",", "1", ",", "12"}], "]"}], "\[IndentingNewLine]", StyleBox[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwt2nc41d8fAHDrXrMiScmuVJQWLeN9aKKvpESZCckm2UK2ShJCGVFW2Zll JklC9l5J+lxct4x7jfxOz/P7h+f1fK57zz3nPc45DwlTe21zFiYmphv4x7/f rFVczd/lHZWzj0UNrq1RYeevSgXRJxfAoNlAWIxOhaW8/Wa9kcbATn4iemaW Cj82WdKLI+1hL4vf5dcjVOg7E1D7KtIH+m1d+77VUKHTOHJXQuQjOGjFRA4L pIK2zda+2MgkqNrg+9t7IxV4jkFVzNlkEF7YJxrGTYXZMke+0Y/JoOZadymB jQrFFV1Fd2pfQMei+KeehRk4+TH5b+K7VDgeJ3Q8tX8GDDvkImjZ6dDpfjTf L20GHv82KIyJzAW2+G5tFZUZeCgQr1i9Lg/WXblm+eLEDLTlB4rJa+eBQ6g6 iVNuBvQJgx+i/XlwdORexYzUDNjpczv+nsqHl7tP+vGvm4EoJcuQON630NL8 WaGibxqGmSVLfuqWQuqbDlYrz2nYkbgu3uB5KdiMpk7l3pkGyxMMr28j+HnQ ROaK/TT8dmpVfXerDCyCyA+zzKaBbfxuc7hnOYiNlJrrak6DdH3/D/mk95C5 p/vPrOQ0KHxU51K9XQ0XpX4qMH+bAt6OtJajT6oh7JW+rHXTFIyPsUTvK6yG KwEzD/s+TUE40zuxrX+qYZy/NPBz5RSMKcjIzzrVQLVqOu3nmykIKeA2SXSq BcePetHbw6agK6mpaMmxDvzG+eO8z03B65zdnrOP6+A+uGmHn5oC34oANJFf B3+/s3K9RFOwp1/xyzdaHbD6PLEYOjYFXpuzRzIcP0L4hSue4XumYPvDh9y6 jvXw4FqhRi/3FDh4aF4vdGgAX4HASdYOCqjbKWZwRDRA0sEpjqpWCmw3laYa 5jaAw+2Qp3e/UqBLjezNMdMAWkKBc1yfKKC0tTLW0PozaJ7bZqpXTgGu0n2t 7BaNoMO6p/TDCwq8mucBA/0mGPITONB4mwJ3fy0F5ns0QcZ+X5b1jhTQG5xs Isc3gTNL66yOHQV4PtZdy+9pgvZAG8HflhRwivJyIV/5Co47ZdX0jSiADk9l 52k1w5SevjRVjQK2pebhLNtbgfnSwSyeHRSQVbsozizXCgodGWxJEhSY7VUs WDvVCuGztEF5MQo4L/N3rVi0wqbaAWZHIQp4KNeKLGa1wq2k/hphPgoE1Ylm Uw59g0OHG6vPrhFwTocLiJPfIHhaplp8lQDOifnWycvfYK8sN//fJQIesH+d ++HyDepzqzM+LhDwRN1TcaT8G8gpr6qHzBCQ3Nr9pUO1DQpUWvb0DhFgev2D YfulNkhMCpNeGCBg++8c6jezNmD7U6Mj2E9AGn8Qf0tQG8Q45UlYdBOQfUVO /3NjG4wfuKIu30pA+UAEUaHdDq5x7e+e1hLQManGmW7aAar1MQ4GWQRQ43af 9nfqAJ5tM8/4Mgng0mD3M77XAbcVkFRjOgEou44umNIBFySCtE6/IuC1I0yG jHbAhxfvGm4kE3BvSe6TlUkn3B3YVwRPCUh4zc961qETYmuzF/fEEFBq8Ft5 u28n7EYBXoLRBExX5hb3J3WCu9ixMyuRBOj5S6edH+6E0VMCmVPhBOznEQ+U NeoCCbKRzM1gAtQr/lZz2XVB3oJYXUAQAWZ2gysT3l0QOtrs/yqQgPjWeOek hC6gJao4zvoTQI4WMOMd7ILkl32dr30JkDgzlzQ11QVRtgauYz4EKC629Tes dMFkg/8hYWzHqxGX/IS74buYHDXWm4ABEe6Tv/W7ge2vzeUSDwIWm3/dbbbu hkZv82gy9kbfhvIsz25Ye8f0Xc8dr/dY4KEbz7rBoDg/gexGQGEak2RHXzdc 5jxiFnSHgGbdYcM8ohse5d0ZnHYmYJKjMu7BUjeEF8Rc0cMWtfbkOy3UA5Y9 sqpHbhMQtn+BqfhqD3zb3NQm4EiAh6uazIRVD1y+vewR5kDArarnOpu9eiCU d088C/a5CyezXBJ7wGhHsvyqHQHHnsZ0pOX2QLz2arYP9u7hX3+7qnvAfK9v NAmb3T7i0tHvPfBbcG/WNlsCFoq/e9+c64HOPqf21zYETPw9kvGU1Av66UJm gF0fPriyuAt7d1ehgzUBATnSaaU2vUBYKHUv3yLAecG7ddK7F+SD6kjp2DeU vy1tedQLn/cYPtDBVm12veCe3wth5gfj31sScGjzF/fM2l7YxJUucgdb0kj0 ZW97L7w4m0I7gM08U0c/vtAL5UxZ/gU3CZiV37Ldir0PzngwlNywR7yt/4vf 0geTAZdVVLBbP1a6Nu7pAw394fvrsKvXbUxZOtEHzuertg1aEJCnY94kfb4P qsqEqLnYSQmlC9cM+4BTYCtbEHb4D26J+3Z98HpoTM8Y++4+Y413Pn3wLPUF RQHb7k7BHUpEH3gv+5RvwzasICVvS+mD4qDMD3/NCThPutqoUdgHD6bUST+w Ff97M+dZ1wcnex97N2PvjV4TfdPZB/Irb6TfYQsPaqsNTPTBIqmJ6zU2z860 2zx0PN40MeFE7GUbRoIiZz+I3O81iMIm3p5vsBHqB1bDvV8eYvetJP1+LtMP zFUa5mHYjaf+CH9V7Aeqhs2efy5/cObs6n/9UBX1QeDf67M64hz3GffDO9GQ 3U+w44Snnxk69EPSdZrxc+wQM1T/0K8fpj4eLc/AdnvzZLYish8WU6LkS7Et 5yaEZlL74bCSamsjtq7iidOiRf1gXecZMoJ9JuChvWZ9PxAXvQ0Y2EeaRuLu dvfDlwl/dQE8X1Kb5OpyJvtByuqrlhy2gEHwzBCjH66lx9pewZ6j7DsJwgMQ 8bPweyr2+GE/W/t9AzA5EXi8Bbvds+NpkvIAXIweTFzFLuD2nFozGYDM2zKP b+D1TrnUvPmA0wB88soSeoYd+UxCxcR/AKjfq990YjvKNERXvxoAs9zm75dw fI2bj/smFw8AM5GrGoN9JZnJxvfTAOyO9A7uxz4hcFwV/RoAiS1m7+1w/L65 oLNPfGkA6B9VMt9ji4Y5bmHiHgSnu9F31lkRwLKWOVO1dxAeFxxIK8F2Pl7f m6Q0CB6Nqux8OF8mbo/V+WgOwlNJExVb7MZJoWfgMAj7w6+ekMX5Fdl2/2xV 4SAIdpVubMP5yLYu41BS3SBk+DzeoIrz1eVsnYhP5yBclarpeYt97f3KH+XF QXD72/05xR7nT5ptcuWJIWjlIpaScL0ocL/AqKgZgqOMkROiLgTseGs9ntA2 BKxr5irl2DEzwS3e34fgddvlZT1XXF9uVL9SIg0Dw13NPxHXL9X/DmpXnBsG f60XpWqeeP7F+V+/bxmGZI5bN8T88Hrr7495PjIMN0z3/fqBXRqt4edFG4aZ d0xcufcI0CTVyiRyjsC+Dy2b1QJwvnssMRvJjICuI+fh57ieL92wzhm0GwHx qdO7KnC9N+H74/beZQSkurS8nz8i4GOlx8lnd0cgp28z690IAiK2hvXohY/A ASbOuLO4X+xqyWDpyB6B2lyOr3O4n1w+MXGlcWoETLlD1YsTCMjhvb5WbDUK phmT2l9zCNhUOfk52mkUNpSbXZrNJcDd2iHK2WMUBnu/GArkE3Cq3mfPobBR +MFRcN+8kIB+z8RL2ZmjQEpUkxEtJYDjZ3966uQo8Hrl3qHW4H5ccUUrwmIM EmMyJbhwvz1UvGXjVvsxaOOx2xTWg+Mht6/9hesYZMbpq/D04fhMNtItDBkD s6TBk4KDBIz5Wxh1ZY2Bik5Z7dnv+P3UXWyEqWNwL0XFlG8Wuzs6JMP1O7SL ybMpcVPgBq2jujpkHBpOOPC+OksBE48I3dKIcQg4/X0kEO9nDFjPz+TGjsOH LUMXLTUocEXgw7akjHHgC6niPXSBAueO57t4N4xDwX3f0Z4reL/j93DvCY4f EA12n50sKEDnPRNbGPwDUFxlYEsQBR4cKLFPC5qAg7xbpClfKMBSXXI0wGMS kjitnSxNp4BPWqN5OBbXvavialWC03AuSTV1NnIKNhZZ+w80TYMgtemMT8kM MCf6UAxjZyD+Uzkz661ZuDozk+NxnQqKIipr4mY0iI1I2OrGMwsyI7zj3s6/ wSmjaXnSahayMzZaFjn9gRh155u972YhoLNKhdX1D9TIC3vurJgFAxbbbRc9 /8AVVvNRh8pZ4DL41Dzl/wc2blROJdXMgsUGL/kd0X/gxtLoL6n6WRB3+cHy pOQP7PLK+H22dRaiTpYmOKz8AcWiLr+177PgNWTYLhM0BzJBV5EkJw3mziol mIfNQZls9K9jXDSwyRe+mRQ+B7Th/fWa3DTQD+hf2vh0Dtw0zATd1tHghPRV yaX0OUg/xMNdw0cDxp3Ljg2f50BKo7BWRogGLus0Npivm4c4hy9jJtI0mHGR 7k3km4dDB/LoBjI0sBjhTO0RmAeTp7UH9fbS4Ephw5HzovPwd38g93lZGshf PWN0eP88iDyV1tpzCI/vpUo288V5uHI58W3ZcRo4Kh7TSIyaB4fu4iLZczRg sovyeRQ7D19qNbTXsMOTZgt9n89DeRavZIsaDbJYMoVvvJyHiR0NV200aDDW sHVm19t5OBCvJZ6gSYPLOssR+e3zkBK+XNF9mQZH7Cq76jYugF7cdWqOCQ3q koS4izcvgITv1/Pm12mg/c0F0oUWICj0b5uQKQ3s5PZnhEouQLeAh57/DRqk LyW5ax5agHuhjqBuQYMtwX7CPRcXwCnaVCHXmgZLSadMKRELENqmNdN+hwbK i0qRB6MXoCeVt8vThQZ+mkdrXeMWwChDvljSlQYcq3sk2VIW4AHZxMjWjQYC 1zaMCRcuwNWtu08veNDgwKa+65qdC+D7oWFnlw8Nblu3P47qXYDEv6m2tr40 KK5tqukbXIA93t8zWP1ooORYJXFzYgG+/XedvvceDdSbX476LC7AwtLhP04B NDAPsb+ev3URLG60bGkKoUHGsOXjRZFFON+Q6qwdSoOpI6Y1SpKLUE29XtWN 7fTjskSj9CJMBj4SHw6jga/qidExhUXwbHPnGn1Ag/gVtuubjBYhoD/xVH4E DVod4k1cUxahMe9wrt9TGkhH8C47py0CVeJk/xC2f25QtFPWIrT1D29UiMXr MePUaFuwCIIeYi9nsROsNeTMahdBbN0Nda14GlhZrLBfHFuE8qmygNHneL0C nVI0JxZhw69Q3f0JNBB5Nal4nliEokOPD3tht37vcDz7exFmfleS+RNpcPR6 dr8SCx0aa9cE5JNowGZglCstSYcLK1Xv1V/QwMizQ223FB2qi7dtCsUuiVcf 3ylNB2m+j0712Fa9R7ZKHKKDqET0aeUUGny7ssFfUJUOe+gXlSVT8fdzCRQR OEMHRyb4qocdEL1cslGdDmPvsk3DsY91/Jxap00HHteC5AXsxIvVV9hM6eAk M2Lx7iUN6A5HaMwWdHi8ZLSLwNaOeHN/7RYdmuk504KvaEBqia1ecqRDsKXT fQdsm/OO0jQ/Osg52nFuTqNBvfXPuplAOnzn119QxBa7b2g8FUqH2WH/SVPs ts9qUT8f06Er8ezAa+zjZyX/Dr6gQ1XA8NrBdBrIpTaGfHpFh9f3tnlqYcuu OfHnZ9IhsmSYzQ5bsuTD7oB8Olw/1nIyDVuY36bQtgg/fz9Gr8bebL9JWbeM DnqTmu/7sLl3mV+SrqFDCRfZjjuDBmT/dUP8H+nQYqVoIInNNFxkudpAB7/T KXrHsOdiyHdbW+mwPqXb8zr2zO8cjvIOOshXRac4Y09q6j5J7aFDwkOT7iDs QXJGhssIHbp7V60ysHtMtQ6bjNNBY2ft5xLstkp6hdokHU5VuBypx24SenHu 8BQdzEIE8tux613U2oVn6ZDbHnt8BLu6jWZInqPDPe3lFgp2uWz8JHWRDk9F jzkvYL8NU73du0yHDaXqUkyZNMidIFZr1+hgTdo/wYGdpfok5A0rA6IvjRby Yr9MVOCPYWfAoI7RI0HsxKXvCT7cDFjbmeomgh175cHuWxsYIHwq214SO7JA rlCbnwGNMR7OUtgP1g8qKQri11txBu/BDrIKbNi5jQH7nPXSZbD96vdd2iDG gD1NFp17sb0kuwbpkgxQ+nOYbx+2y927lmNSDBBtrbr277lDn9SfL9IM+JPL VSCNbXWkxbtIlgEXzwgI7sY2i3TlSDrEAIXskdAd2EYzYk9CjjBAzNyOSxxb T71BxOkEA4YvV8cKYV9Kc8jQV2bAh889cpuwNVm2Hj6tyoB7ruVDPNjnjGoq ZM/g8bhZxrBhq5bfOrdFnQHu5yf0l/F8Km7e2M6sicfff3Q/DfuIU7kh5SID khyv805gH2g2nezQYUDUh5trvdg7gwpX0w0ZUGwpxl6FLT6mH/L4OgMObh8Q y8MWUmbj9zRnQMnNB2eSsdcvXN6tacuAkx/GKryxObRXC446MuCU89P11tgs Oa+UJO4wAH03sNXFXjRf0J7zwvMRpaCzD/t3TeLgoC8DUlIshjZjT4mctfwU wIDr7PV31nB8j3Q+9Y5/wADJb2otX7E/nz6egZ7j9c56ImuM7fbprqxPMgPK ve2eKGPvVqt7W/GSAWkrkgPC2EHnL9ScyGZAfprB1i6cj6cumffJVTIgVIb7 tAL2XEeWye1aBiwwZTTyYademZ3Ir2dAhPRbuZ84/1muef6RbWHAm0/2xeHY 1SaPefaMMMBm26RTK64fDmNdkTfH8edl2IsmYouZCW9Nm8S+LZZrhX33ZvrO 7TQGdGca+TJhK9pVKIuwLEH4S/Uforg+lXj+cuDbsQRmhSJtUrj+WazKLl7Y vQTkxmuDY8k4332cvcP3LoGixrOWBGzne2uh3PJLcM8j7xYv9qFQgVTSmSWo CN3gNonrb06MSifj5hKkCoeKmuH6bbQlWP+YzRI00M+8Xo+9Lr5p1MVhCYqY 7SVKn+H6lqA788dtCYRVshrZsaVf2rLPhC7BF+WXAvFxNHiVH3d87PUS5MaK F4fF4Hhe1pfuyV2CYrSjUxr7wGnRbc2FSxBzeCtbYzQN3vekrJS9WwJbZp9I Enb72uuqx1+WoFTg1x3HJzRg1qw8rUJZgoeJTHeFcf8yJMYuJksvQ8bmuKFq 3B8l5V6pxsgug1Rk7eWT2JPeNw8/OLQMVOPRkbpg/P35pja5nVgG8U19Ch+D aHD/2Hz3BfVlqG78wvIO99uyIHajtVvLwPcmluyJ+7XA9r1WRpnLUOcWEKqJ +39E5P0rmdnLIK9WLZ+O9wdcLBTVufxleDbA3PMX7x+YRjO3hZUvAyV4ai3L Gcdj4q6vRV+WIftrz8SCI+6HQtsPrJtZhieuIUaGNng8G4UW3h1agYtPpbxu 4v0N1c99jHx0BWzUX8YmGeP5ovU0X1RYAbufHcVdRjQwaX2a/vPkCsg6TjBU DGlwPlzgKr/OCkiEcafxXKPBdi6+91auK/DenOW30yVcX5k57m19vwKhTdcv BJ3G9To7zkiregVsyzizUk/RgPOajEJw3QoUNNUIV5+kASrQnJtrWoEkJ9Hz Cyo4HkyjLVoHV+CHVv2QrjKerw+SGsFrK8BzRPTo7BGcD4FKm+ZVVyHvU8q4 2y4aFHHcTmv9vAp9Si0bSWQaTHj5TVd+XYWCe1d41tjw/ov2SC772yrIPGHV pbPietj7pja0Fz+nho1OMuP3y5oYUv21Cqlift01q7PQpnFNsIjjL0wkBmde mp+F2XCVkLizf2FxpwjHEt4/7xXgtTL9+Bfn08Az66pZoIYvbDrctQZvhe2z My1nYXtw8H57KyZ05cLqYTPeWRi71t+n+pMJOZ9qWsi3osK5H+2MIjtmpOCk EOWYPANuTuaWm6eZEcfi7oqI8WnQLH6mvtmFBX0wZUVZYtMws2LlxbrAgoqK TZx9b0/Bi26/t3a3WRE/KGY86qPAxMcDw+F3WJEnfA+T6KHA3rfDnLmurKhi LX3qbScFiiOUjKmerOj5zzOHR1op0KTG4HQIYEUXLjHmzn3C56F3DsaO0axo fV1rmNlbCmgmG3M5l7CixZhTTM2PKLBkqWTivsyKvLrl2srweUv9nTS6s8qK uq44sfXi89izdVvEHddYUdnx0nYGPq8pFvwetmRlQ5GRS/+hUxS4u5xurMfN hqIq0r+NKFKANXyj8dFtbGjgregWR1kK8BT+NJw/wYZkhryKuzbi8x2pU4mm yIa0uHTrZfgokK1bKzKtzIYCfPfH3tuAx7fyfHBclQ1taPEKkuehQMRpbcMO dTZ0X34xO49EgU097w0Kr7Ghnbe37l2lEyCy+ljf0YMNGW9eIS+O/Lu//K/s qRcej8WG3pvDBDh/4hSsvMuGjJZNf/bh82rjY782Ln829DqoqvITPs+6SDmq vbzPhlQaOe697yCg9YLW0e7nbGh497VM/s8ELMvxRK8msqFvRwJ+Z3wiQEqo 4ff2F2zozp2eR6ieAK9xyHF4xYbOdDB/dflAwB73/Tu5ctiQ9hkXz7UKAp+D 1/MrVbEhVu23S/fweTw7uNHhRg0bmvPSUlAuIKDHJqg59AMbOvhDeXI5jwDZ o39Duz6xoVpfqYd38Xm//8s0k0MrG/osVrXvRSYBcvNNMymjbGi9pIi4YTIB E2fvN3KwkdDcuYcPyh/h87aGifhOMgkxFahUNIYTMKgp76LCQULbDU1uDz4k oENnWMKDh4SuXfpyh+sBAbU3DrtTNpEQ89Diyr0QAhJ8+nc17yQhdHb7Daof AVv887yJXSSkxGqWsBs7KiiwnSxNQheD/jqb+RIQ9nC/D8iS0AfD/1jG7xLg 9sy/K+8ICd0Qrq9i8SLgcolM4JOzJBTm6b6t2gXPbzlTf64aCUWZjIxux9ao 7DzQpEFCF8i8RmF3CFD96DPApkVCwjl0b2NnAg60tx920cPj2XItWNqJgDdd GaGR10iII8t210tHAnb1eQ/nGJDQ5MuSUHFs0dFd93+akJDiiYPPJBwI4KF6 jundIiHuhRyR03YEhPzWOnbHmoRIMebLHbYEsC7sDH9sS0K99J/pN7GXVlqO NzqSEGNz+u1oGxwfTK8eTdwmoU0cfDEHsGmsHj9YXEgoQPrFw2ZrAia5djxW 8CAhF1o0Cz+22XrGhK4XCZ1T2+dfZkXAMF+zovNdEmJV1Bo2xe7a4jb55h4J aW5LO1B5i4APUk0gep+E4hWLzZ5aEqAePqy++SEJ7fyqqHkVu3X+t876RySU sululQj2UN1Wm7+RJNS0wVM55yb+vL37XBei8HxcHdT0wKY8QfdmYkjIO+js 1DlsuunN2KF4EpLbG9w+/e8+uNEjtes5CanOsovXYZMOhec0J5KQ6aGff59j P4h7UVafjF8v5OXohr2RuaiuMoWEsq1F3f/db8ZaNrQUvyQhyRApwaPYYq39 fTlpJGRjP31eCDvtKPVHWgYJ8dU0bWPC3pvEQkvMIiGDCtHASXMCCsibV2Le kJDXGeWwduzjdnvYH+WQUO5o0N4a7OpOxY3BeSRkXnrZNv/ffaySlohPAQld j2PTfIn99eWN3a5vSWiY8aclDvsyj+th+2Icfwu+c4//3SffDlO+WUpCxTpc FQ+wr/cnqBmXk5BREFX6333ypGr+Zd33JHQ3NQL+2S6rzvhCJQntcNZc+ff6 eb4eq7PVJDRgE2Yaie3lTrkDtSTUk5d2Ox6bZfSv79E6EhLjJx98hR16buOD /fUk9EWQ53kBNm/ezqe7GkhIfF64uBY7RvB4ilgjCY1FJfh2/rsv9zmfLdhE QrbRf1YI7NQJ49INzSQ0qx64lxXPl7Tm7Q/srSRUVl3GK/rvvr8oqHntGwmd L6dn/bu/PyoS37vYTkJFb7NW9LErA7LHqZ0kVPLzGLsP9pdLHUvDvSQU7R95 /iu29rufpJ5+/JxHLoyO3SO5zNs6SEKufEZBUjg+JmgSu6pHSejnBqbqMGyb q/KHSr+TkPHBy0w12H+qzynl/cD5K/6LbQmbKcL+UvIv7AMxJs44HoMW7xnF Ukhoa2ZEeRH2OuOYWxHTJGTyImKIgS0kW+HjS8Pr5WgXFobj/UV0a5jbHxLq WJIT6Mbevfo92mEe14ObbfZSOD/km7jemDBIyPOYTfxX7PeHRUv0lklIoFXX difOL9VnB2u1VnG8F9EFfLG1rPR6EDMZuf1WmVHC+WnFkcYmwUlG9oYu4/04 n7+whDw8yU1GIq+92S7j/N+7emuzxToy+rp1JLgFm0rbt/s1Hxlt5rhe3WqP +0V/kYa8EBnNlqnKruB60tn5tENXmIykD3MlPcL150iru6GHKBmR9FPuSd3G +VWnZF8lSUZ99oJZRrheeed8jFSTIaObquL5dFzfhjLSt9nsIyOeMXtquisB KDX0Zfh+MnoTrpt3zQ3HU+x/xe2HyUhmkVLT6I7n06+z11CRjGxKjA06cf2M uPxD3Ok/Mlo4VSYX44/rj+anzKgLZPS5hevR3QC8vmqZh0ouktFrwbAHVoEE CCjbnlrRISP3gVvu/wUTEL9r/maQERkFRVrpwH0CXi6x5cbbk1FNmRGt4wnO //mJoxWOZHTxM9mLHkWABbWhevg2GV2Lon4Ri8H9bPxB2w43MrKiQJ17LAE5 Xzct5PiS0Zf7Jpf1EwgoSd6h9OExGdGf6I53pROwY+2UZ80TMmI5ba0sjvtV hKF5WVU0nh/LFibbLAIshdLk38eREf+Nvx95s3F8RO2SLXpBRrXyHkF+uB96 BUuLpeeTUdW7lBDOSpyvP9QNXxWS0aYEC/WwKgJ0Tlk/Sy0iowehc5Hra3C/ ZH4jmFxGRoq/oFqiDtdbj328cTVkFCeTWuvUiOPF7gDz/W9kZOIjtKOmG4+/ SQtC28koO0QOefYSsE3G0Tu4k4wm9/CxHu8nYO5nPsO/l4x2TZwNrBoi4NX1 w7+9Rsko4pxPEf0HARw6R77b0fD39z4cJzJPQLOC4kdtPnYUDOa30GYKhJXe WT7Dz47+sL4wsNxCgbPyuQcVBNjRV233TVFCFKiWlUzcvpUdkbgi+xZEKVAo weE6J86OWHI/r/zaRYFY9o7dMQfYEYx73gs5QYEb7dYPei+wI9dHf5WLTSkg rvWq9utFdmQT8GGDvjkFBpqG6DWX2BFFQHOa1ZICV+ovmmfpsiMHVuWe67YU OFd2VNnTmB0pRdblabpRQDaJdVbYnh3Nvjr/cCYc7w+tnl0yCcdu4rDXq6LA I49Udp8IdpTZc/V9Qy0FpMJev0uIZEd2G7fuU66ngE7mu+39MXh8PQFBx75S oOBn/x+dJHbk43PK3bqfAjZmwlEaeexozcHU+iudAiOGCR1H2tiRtmRWWvzR KXC1fRWi04H//rwtFCtMwXrvbEXnLnZ0vveBfTdMgdLzipf5fexI09nwlfS5 KYjvG3Te+50d7el52LHp6hRc1hUVkJxjR+ov6aXLnlPQoJWks24zB7qh9+vo gfopsKr7Ucm+hQN9fXn3fmHjFKw7tnc3ixAHih3nP6DYMgXaYmVLCyIcaMQl zsOwZwr6p9uSRnZyoBc8+h4jxBTMhJGJQnkOdN9+tz6FdxoEPtrevabDgYRp ASL7r09D6bG3Py/rcqCmMYWmGxbTcO3NktaFqxwojWvDmUTraUh8Erz9lCEH ss+99nqHyzTsNn3RsM+cA6Vuf53ren8aFNc6NjLf4UDR28POnCiZBtPjiunp URzoQQpT+wX+Gbg1/XV+IIYDsVQIctO3zoDDC+NTG+M40KvkU3syxGfAh9N/ 1CuBA1VPNB4Ul52B572ft2mncaDiuDfSDmoz0OWuG7FSgu01Hx7tNwPq5U7u F/s5UGhop7UUfQYu2rE1BA1yIE3f9Ic9azOgJxmz+f0wB5L0fub8hJ0KN8PK CqXGOdDRWYG87YJUCLjGNLM8xYEqHeIKco5QoXLpoWnaXw40d8Yi944rFT7m iOX3M3GiN52nq0t8qNBkmr/Gy8qJbp65xM8aQoX+xo7nnuycqCI/Orkolgr0 +G3dWryc6FaahvL9ciqsaWbvDNrIiWI0J85s+UAFMis4v9vEibSL6O05X6iw ydqUT2orJ5o86pRAH6DCNrE5Y/1tnOgOK4V4/YMKku2BOREinGhl3dqQ5QwV pIMFVz+KcaJWG+17+xepcFAhU2NZghO9/v//h/0P0FYg0w== "]]}, Annotation[#, "Charting`Private`Tag$24382#1"]& ]}, {}}, {{}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{0., 1.}, {0.28559933214452665`, 0.839429693696838}, { 0.5711986642890533, 0.8382503655299828}, {0.8567979964335799, 0.9184554181319822}, {1.1423973285781066`, 1.0226681843705794`}, { 1.4279966607226333`, 1.094085064148807}, {1.7135959928671598`, 1.0940399413003423`}, {1.9991953250116865`, 1.0225583563026357`}, { 2.284794657156213, 0.9183207095094}, {2.5703939893007397`, 0.838373754985018}, {2.8559933214452666`, 0.8405637100211579}, { 3.141592653589793, 1.0020231896570404`}}]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, {{}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6], PointBox[{{0., 1.}, {0.28559933214452665`, 0.8393949062365745}, { 0.5711986642890533, 0.8378233127485477}, {0.8567979964335799, 0.9179410469173214}, {1.1423973285781066`, 1.0221653574243341`}, { 1.4279966607226333`, 1.0936272332634136`}, {1.7135959928671598`, 1.0936272332634136`}, {1.9991953250116865`, 1.022166999110966}, { 2.284794657156213, 0.9179402150899669}, {2.5703939893007397`, 0.8378092138792808}, {2.8559933214452666`, 0.8393320618462744}, { 3.141592653589793, 0.9995720610246999}}]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0.8248949822467447}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{369.9999999999992, Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange-> NCache[{{0, Pi}, {0.8248949822467447, 1.1038027450551475`}}, {{ 0, 3.141592653589793}, {0.8248949822467447, 1.1038027450551475`}}], PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], "Input"], "\[IndentingNewLine]", GraphicsBox[{{{}, GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQjQ4e117JdnK/ZM+gwNL24bO2PYT/yJ4hIdHrS7iq /ZU9+xY+znptz9Bg5RVTagiV/2TPYGA129DeyD5m7kk24Zvf7BkYljt62BhA 1f+2ZzigY1TXp2Xve2ezzZY//4Hy7720JdWg+pkcGD6sCVrmpGg/n9d/p9YE FgcGhf0XpQ8Z2aO7T0LXJeS3IqcDw4kpIX6P7ezvOslaHbdihfMHm/sh5rE5 MGy5mnhV288e7v4ZymvfT0qwBwCRHpP/ "], {{{}, {}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13}]}}, {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6]}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}]}, {}}, { {RGBColor[1, 0, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}, {{}, GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQjQ4e117JdnK/ZM/QIegy29HAHsJ/ZM/wY/XU4wGG 9lf27Fv4OOu1PcMJD8doB5j8J3uGhNux6zN17WPmnmQTvvnNnoHh5I0NndpQ 9b/tGR6cAPN972y22fLnvz1Dw7GkmUa6UP1MDgwMSm/9/Qzs5/P679SawOLA UBF3JNDWCGoemwPDio93v8ab2EvouoT8VuR0YFAIej6f28Z+qLsfABk1m+g= "], {{{}, {}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}]}}, {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[ 1.6]}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}]}, {}}, { {RGBColor[0, 1, 0], PointSize[0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{371.33333333333303`, Automatic}, Method->{ "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0, 3.141592653589793}, {0, 0.0004713121639553508}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]}], "Program", CellChangeTimes->{ 3.8697168047601957`*^9, {3.8699015362353296`*^9, 3.869901655762166*^9}, { 3.8701037352671075`*^9, 3.8701037368175106`*^9}, {3.871014192560913*^9, 3.8710142620168858`*^9}, {3.8711031888751507`*^9, 3.871103214106594*^9}, { 3.871107708489658*^9, 3.8711077866741295`*^9}, 3.871108552034906*^9, { 3.871448649190603*^9, 3.8714486509427032`*^9}, {3.8714487068409004`*^9, 3.8714487830722604`*^9}, {3.871448965648703*^9, 3.8714490173916626`*^9}, { 3.8714512727686453`*^9, 3.871451296847022*^9}, {3.871454723513014*^9, 3.871454811128025*^9}, {3.8714559095778522`*^9, 3.87145593681841*^9}, 3.8715214648260136`*^9, {3.871542507355337*^9, 3.871542713600134*^9}, { 3.871622445219776*^9, 3.871622524091287*^9}, {3.879747534495507*^9, 3.8797476000312552`*^9}, {3.8797476328081303`*^9, 3.879747681014887*^9}, { 3.8797508735450807`*^9, 3.879750909956947*^9}},ExpressionUUID->"ce91827c-53a9-453b-a51e-\ 4839db2c2bfa"] }, Closed]], Cell[CellGroupData[{ Cell["Przyk\[LSlash]ad 4.", "Subsection", CellChangeTimes->{{3.8697167693461704`*^9, 3.8697168012149935`*^9}, 3.8697168979185243`*^9, 3.871107691826705*^9, 3.871448632742662*^9, 3.871622592553203*^9, 3.879747429363494*^9},ExpressionUUID->"158bf60d-30d9-4203-a0fd-\ e8a11c4b4250"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", "y_"}], "]"}], ":=", RowBox[{ RowBox[{ RowBox[{"E", "^", "x"}], " ", RowBox[{"Sin", "[", "x", "]"}], RowBox[{ RowBox[{"Cos", "[", RowBox[{"2", "x"}], "]"}], "^", "2"}]}], "-", RowBox[{"3", "y"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"rk3RK4", "[", RowBox[{"f", ",", "0", ",", "\[Pi]", ",", "0", ",", "15"}], "]"}], "\[IndentingNewLine]", StyleBox[ GraphicsBox[{{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwVl3k4lG8XxzHDDEmoRClaLFmzlBTOnYQoSpaSLSklya5sJUIqSfYsYxcZ e9lDFP0k2bIzdmNnLFnG+7x/zfW55nnuc873LPd5Dls+0rvDxMDAYIBjYPj/ L+4rW9PwSQcVaHC7NRY6pCQ0WXn20HtdkLvtdYRfKEFlPVfaqivUHAI/B0Rt HP6qkrcC7VxkaxDf6PwR5PNHZXTPvbXPoY/gVKOqijP/gMprvvqd5DInaAvP bNx/aUIlTdQkgYHsBnzdKyILngsqVQrzJ66RPKDltUGy33+rKt3qfjWpoU/B pHUN58u1rbIuxi7mWeMDe9rqRK+l4yBAtsMxtcwXQt9kf7l2jgh7zpDKmgpf AD/f1M4Ew52QeM4Gv5YdAH7meKVAJy6Quih/+XD6S5BaaDE692QPlF2hh2uR XsGJ03Ez1uX7oN08VCQu9C0M6frczl0/BHlyUqeH60LgjWmYZ7v7YXBTeN/r VvMOWjX/Kg5FHAU8mAollr0Hhru9x33EROGnak3DyeIwaP3WF0xPFIN36iJ2 PwvDITEv/ydFQRIO6Sx8XsqOhBet3ZpG5jIwctXwZmBmFHhEe3FX/5WFLIOy bf70aPBvD/+tYS4Pp01faKqTPoCx2h2z8A8KoGfL1x0VmgC/pji139SrAPtp +BqhQQJy7dLfOBME8yUOXJQ6EoTsJPx8YHIOPld0FLnUJMLmnd2m5o7n4Xwd iR5flgwfn/kpaa9qgLBG65VJxRRI86Bn0cUuAlsDc7JccQrocjbWctzVguZG G436wlRIVZuTVVi8BKZt8iEL2ekgoyVy/ajMVUCG1kNnJTIg/cZstsrEVTjW GS3vn5kBZ1KPHFxP0gNqD71zf/pHSP0R9/viUX1wG64/rEbKAuZ309L7dI3g 3aJJQURoDgwOnvLPuWoGb/bGKFXtzIX2daZkMDSHlrwXAif1cuGs0zFDV2kL uEk1GT3UkwuDs5xnL6rcArubOxwWp/PghjMjq7nzbQhTvhcYzVkIqcYGr/Dn 7kFX17UHHAaF8EtM+VrA8D045Ao6vtGF4Gp1coUh8D6kk3n2PDxSBMx6F5xa OmygVKAuAcl/hgLbkgPVrx7CAOORL+NGxbBTMNTzU4YDHIvfGWMSWwx4lMuh yuoI98788/wzWAx7ShJj62wcYdGxWbXsfgm0GObxvD/hBPgR76Zgj1LgoIrv kfrhDGLfe0ZPJpTDYh+H23uBx3C2TotN1akKRg1vk1VdnwJnW9pvhfdV8Ojq t+Nu1KcwMsQULllQBeu38+pzpJ9BMEOZAN9SFYgPLWqnpD6DobPiJ+cdq8Ep 6ZdMXrgPBObvsIh3rIF9o0+EaC98oSOhsWjdoRZwl5Vam5IDwN5d51aBfT0w WWkzXjYJAS07pQxiSD0M93E+mvYJgaOWYnOmOfXA8FXUPj09BDousngRZ+uh uj6R99FSCCjzVUaZPmgAl0bqQ+XX74CtWLKZcPcnOIxoU6JqQiF1mR1MbjaC QNnyP0MUDg+L7wQzHW0GuysmEnWPYqBt4iJrumUb/CaXiYpuJcFctOgFX8c2 cNT5FWjAnQxs2gQf8+dt0Gouc8tTJBlQdu3avqQ2SMhUaCu6mgxZDjARSGmD 6bqyk62pyfB8Xf6HjUU7ROleDX9/KQWk2QVfSJl1wL0Bjits71NBq4JexWbX Ad8lVdJ40lPByq5vc8yrA7a9hfX2laVCTHOMc0JcB2ik3mBbHkoFlvC9Vpx9 HdCekRJzUDYNeg/uOL948y9EWBXaMDSlQZD0CsPnG50Qcpzkv76eDu5uF8XH bDrhw/wHh0aODLj/NdaAx7MTKiukZoKOZICm7vlM1/hOKCrr/9t4MQMIj0Ku KQx3Av/nO1fMIzPAjyyWVmzbBdJSlzbDpT6Ct6S5dtnTbvCKPlDJfikT7Fzy XaZCusGcw6B8n2kmmFYwkw4kdQPhknw2q10mKF3+RPOo7Yab6EBV4ttM2LD9 F6fE2gNKX5FI/J9MePzp/XxFaA+wOhLiUq5kgYN4fXhVai8Ei51K7VL8BCN3 Rp6RPveCgKXQOQWNT2BIYrB99qMX7otJHX6s/wnO7FVURZO9UG6TJpls9wmY tj/OfpXoA15SEOFD4icIbXml8bWgD74Nntm/ypgN+J0Zsgm1fdBSGx/gvjMb XDVqDz5t74POtfjrA7zZYFy+uaSy2gdjv3d8uSSdDUfSHpIqz/RDtfmCfYFx NuQ/0f1XUd0PU9Tn4jFZ2XCs8MFIXEs/iJ7n8BYpyoaI2YDfXsP9MFtLjQ2r zAb321WpyswDEO7uOLLzTzaoXpbRq9AcgE5bVyl3WjYUBlxWjrsxAPL6PC64 rWwQrrkv6mUzAMq7WbofMJOBTSGJrvR6ALZdV7O79pKhVXB3VvnvAdB+GWQs cpIM6jelI2IHB2A94r+H6UpkKA7X9vFcGAD1PsTCokYGHeYa8XjWQZhLin1m pkcGWfd1RjPxQeCy4Pvm/pAMDyIDV3/JDULIYrzQjBMZUgp5ZpSVBqGkdOWl sjsZeOZkOw9eHgRhJvaDj/3JWJ8/IPfZDYJzwZlhvTgyWHAtPS53HQS2UQ29 60lkqKt0P//BexDW97/7jQ0vCOEL6rwePAiqpbxNhblkWPnOlawQMQjfBT8q qRaRwcQ5+iFP/CAIcu4Pyyshg8jvDKa27EFwXbrWc7KGDK89T/zKLxoE3ZOf SrW+k2HxeHHku4pBCDyKtzz3kwyVfj8kdH8NwmbdHLX1Dxn0z4wZ/pzGnn94 R+jNABlKxx8e/kgbhIucj57nDJFBIHx5KmBzEB6L2TgVjJKBOof3ucBOgbrz uZvmU2S4Evda+9geCjAMOb8izpLhs9YeHhw/BVw/H/oQOk8Gn9SjWVXiFDiu ayCpvUyGMb0slwQ5CpB4SzOerJLhEoMc8j5LgV2JhREv/5EhP7uUzfQ8Bdjv 2NPcN8jAe1O1/aw2BcYn7ny9vEUGb+LPhP3XKOC/YrzMuE2G4aKrNv+MKcDa YxkWyZADmre75DstKcCY0h/DwZQDZM5b259tKOBh4kWwxuXAnsqJhnBHCry4 qNRFwufAkwf2Yc7uFAgTtt5VzpwD/bxrZteeU+DKraiPxSw5oPb96XHZIAqc MihJjyDkQKYTgcYZSoExfyY2Q2IOcB5+WzkXTYGu/o3mFYxdm3heNiVSQHDE c+sxaw70eMRfy/5IAYeVTyG9GKPjwode51FgNQD3+jBbDqR1ZE/YlFCw+0Jz QQNjdr+TBRerKeCS9r5GF2NHmQov0QYKFLjpMCli3Nmvpkn4Q4HWatkCHMbK rxu5xzopoJ2p3ZmDnZ+kqN9XO0gB8/JlZ2WMieM96ckTFLgjOPD6E+afXdht x+fzFChtIRzbwuJpPTeldGuNAme7q1WkMT4950hADENwzzuPoorFHx+7/ucQ cQgkvH5xncb0wWs9j93aNQSnkHkbB6afzSqrde++Idjmwkn/wPRuTnknUyYw BNp6GSK3GHPgpB7fZrTIEHhnvqvtxfIVs036/lh6CEzOGbCfoZOBIVv0nZHC EPjO9jI/2SRDI+G08F6NIUh96yseu4b1X9HX+SWdIRCx32/9bIUMkZYaZS2G QzCZfMdJnUYGywrDKyF3h0B+LFPw8Rz2/Gdebr5HQ+BcwVWVOU0Gppzu1kS3 IUjZZN5ZOkmGJJKZUUHgECivFw7ZDZPBMVqQT+ndENBERfz3DJJBNXSouzZ6 CPZJRLBH9pJhyPeuWUcmFr/w6qZsO1afnqKC5gVD4Gho/OIS1j/PXaiU8bIh 4NSPkzz/iwxHrO3u/GscguumTQL1tZh/Wq62/HND8G4q2kk2H/Pv/Gmp1NUh uBZkP3gqG/NPaX1OkmEYwtdfbvFmYP5JejsB1zAw+n6NdsXmxRCnv7ul3DB4 NydnR2PzJJ9VU2nq7DDw2H2cfvMMs8/ERndSGwYVueEgC2z+HKG98XlhMAyK xpEXErF5Zfk3PDDDbRhuPvri9P7/86zZSEvm2TCQ/uTe89LG7DfwsZcGDsPF pd9B6tj8SyqNe/tf9DB8mqn57orNy6G41IjZsmHQSx3S0uPBzrMqSpFnGAHj lIfBnC3ZIGvqdreCOAIq4Ua+G/XZwGSoKKrONQIazu0JP75mQ5JGRZbRkRHY zxUxgMvOhiGxunx3tRG4kOHrz+mfDbcX2qqqAkdgbk+MR6xsNli4hxgVh4yA oeeLprui2WCCuzSbEzUCAf9wd3kPZYPh3m8HEjJGgJDOuCjDmg2ainmuXvUj cFEjxFu1/xNI+byROEMchTdsxwvWfT/BGqd6VEHAKBTeWz0+VpkFtGhG6ay3 o7A3eqx2NC8LFo5U1CVFjoJpbXjPn5QsoMrLL71LHwVx933K9kFZ0Hf9iI79 j1GQiIuU+E8/C2pIdJwkYQwur9gPCY1lwusTXx6l+Y9B23M7vpHNj/BT9u+Y S/AYHGz903x09iMQT66aXogYA5OhiAtGAx/BT1Hh0kjqGKj9MdWOqf4IHqpf RI/UjYEhRZg38sVHsNH/QonDjYOOrrlZwo6PoPH4y7XwZ+PAHfh+ZwxXBjBV fVHwc5+AFHuh+ebdaZC5kztt6/kEDI/yZSYwpYHeTds9bq8mQM3Na8xpIRWS VwQX7sdOwJzqDjep36mgJhmUqVs5AQNKd5lWg1LBP8bk4AGmSZAYD/GUxqcC mwsjLv/lJKga3bY8zJAC+TU3HcRDJ4GkEalsM58MxpyfB1JiJiHe7Nl43SC2 v2XZlEdmTUK0mOaDL9XJcGmo1cXr1yRwuJxPeuuXDMG6aROaXFSoIez2fMKR DFxi2k0DUVT4MgGlNqeSYIyQwFVPosJ336o/38SSoHR0UT83gwr7HskfOSOQ BFaJMT3PiqmQV3aY4RkxCYp5qROHO6lAOL1R5tGbCG9WlCXYBqlwfcksteFP Ili2vXu0OE6FVN/xBYUfibAjRHGlZpUKmVM5l93yE8GM8BJntW8KProRL78O SgS50V71SwJT0MO+EjTxLBGI304EyYtMQVjwXqt7bomQ793JyawwBdYvuwPa rBKBeUXkUJrhFFSsCDPYnEuE7laPW8FmU8AjT3k2ezoRyHm/U1zvToG+/ndK 9IlEuP7QTVzDdQoe80hR7womwqeR76cnwqeAZOueOcqYCD41+z2b46bgmymq +rROwvY1u6/FqVNwK5yfEL9EAgYTHvWXRVMg/p3SyjBGgnZFm5cOFVNgdPHA CacBEmTuq2y8UTcFnAd32HB1keBa651rYu1ToN3vKdTaSALRvJII7r4pKCmO 9V79ToLN4J3d6yNTsELOtrpYTYI0rSKL/2hTcDgrPNDtMwnWq/F2tnum4Ybd aw7WZBL8Triep88/DRcWxLJT40mQ4vWJpnRsGgZePlZxiiGBjqK+x075aVjM KJhNCiXB0X0Zlctnp0Eso2qC+S0J1mgbjP3nsfdDS199eEWCxNzkQPK1aSjj Pupn8YIErsGr/0XcnIbzkiVFIc9JoGWrvevp7Wkw3h+kufyUBAJaCXrWD6bB lbSaGexFAprIUriu0zRYF/lom3qQoIFZo0vBYxq8puuibj0hQfxwDL+g7zQM D3szxrqRwKl61pz4ahrM83xp7K4k0ExQTZ4PnYbvOj8GC51JEFDf3Pf8wzQ8 brHz8XYiwfcFM969KdPY3jXV8NKRBCwHZvTSP03DV8dVjb8OJLig5vFGsWga 1NXsXlpj7PeQtf6/imnondfhP4txbUQkk9n3aZgOLQnWwxhXJaQ83zQNlj9m 7cgYq04WuD3/Ow3iP3W0dbHzfbhV8/cMTkPku+v5JzH7VWebp9MmpqFrMkPW EvOP4Y6ZiOLCNIQE/zNudyEBBE/f+u/fNOipCZa+xeLz/uIea8o0A7wLOwfe YfFXDhL/zrHNwErBr+u9mD5brJFcz3fPAH3D9/MjbxIoyQld2sM/AyfjHwZc 8iFhe1GBf9qxGbg41W/s5EeC0hfnqk9LzkDeN9WqkQCsHsi/N36enIHPWXwa iVj+FDtNT5mqzMD9/jXvj1h+HzNO28+pz8A/85erW+9JUCzmnuWjOwObHAEo IYoEp7wiBNMsZuABL7fvzyQSttccu3n6/gy0Ex7GGmSQoPB3fvhPhxmwsW2q kyaTQO7Ib7a55zPwhDAU2FpKAkdt0ws+r2bgEnOrajxWr/nOU093h81A5SH1 y6X1JDjxg7CskDoDrfEZYRN/SfBoPlz6Z/YMmHkfX9zA+oPMd8zG5PMMRHtd plhOkEDSFg08+zEDYf1zRZJYv9mGN/Htbp4B47dy5aE4rD8rTfRTO2eggy05 /PLORBDjetLQMDkDtcoFuB+HE+H+GQLeZBGLb0yyxF8iETJuh6vMrs8AXt3f N14hEUQ+5xVws89CyaZHVKdOIhy7SY27KTUL9oWOwf4+iXDb73HnzKlZcJxp K+J5mwhJ2Sy7n8EsZPivOuPiEuEww9HAlCuzsNv97gatJBEOpd50nHGchYi5 hmmNtUQwbZr89NRjFmT3aEY0YvMwdtVtnMsP+1+c63o+XxLs1wozORU+C1Uf 0m4nKyXBvrlG9adfZkF43P+KeEASRL37emvy6ywg+w/FD2KSgFc+3/Na/Sys 79bEc5AxfhKZL9I1C24ss7fdO7DzcJaHmtex80MsdzJKJENMqr7iGdwcxHQ3 3TRXTYYDmhr6KTvmgPzp0PejN5KB/41E0GP+OejiMiVSApLh0L7VZUGVOfDa l7lwlpoM8SWTnK/U5+CWo1lTFy4FBEx6xZd15oAx//oq5WAKCCZW32ownwNZ +Vfn5a6lwBHx178cfOYgq/DP1YmaFBCGw6k1tXPQmc53gPNLKqRRdldJ/JoD iioaCfmbCsJ+LD0R7XPQfGzyjN9aKog0THE+GJuD6jDxmNqzaRB2/GYlK34e LOdbDEp/pEFEgZBYvtA8MP0xTKMup0MHPkFh/Pg8KOl5jTUfzAAeQ94L/FLz MFkgWCmjngGRa2wW/qfmYU+HuuSdqAyIUp4PN9aYh54FSiNJ9SPE/ChlxN2f hxvaL451kjNhfjD3yZztPHTe8hy905MJGutpCz3281A0f3HbiojtIxLvKYWP 56Fw7eyP4ttZoBP6oPpu4Dww/3UzqxbAvs9N+X1+ps/Docw05yxsf7ruyv3v c9Y8xAgIGHtSsiHnLdEhOWceGJfbEmqx712TGpqF55d5GH2Z9a38KfY9JvIL Sf2Yh2GJiESDGznwYNGLIXRsHoqL/xOpeJcLNTucH3tT5+F+usgl15xc4BWy mbeZnYdpzsdbD3/lwncjw8HzK/MQ365TzMeWB4IVUlXLzAsgsqFvZu2fB20B A09vCC2AzbKmLuOrfFA6eG5b0GoBDuBnRvTrCkHTpM3R8t4CeF04q3R/thD0 P1iPJdsuQLOQm9qvfUXwgC/4l7DLAoh/e3v8xYMiiNnb80HCfwFerW77lPB8 hrWdLqdPZyzA5YEMVVPPL1BIz3DQnV4A7xYq6fuLUqhSVhoNmV8ANlQ0L1pS Co2ev6+30BZAccn/1uB0KQyvL4PB1gJcOcSprGtQBtyrqhw3ORbhtGve2Amx crCf6828e2IRWL5wCR4dqQDxQc4RL+dFMFIw7mxtrAKdccEa18eL8FH5ksvw ZBXYz54gPfJchPcMRRQ+QjUUbl4xueW3CPMuyVc3zlWDEt+7NrWwRSirnkx8 V1INl/S46nYULoJzTgPfntwasK3lSoteWgSdSPbzGaW1EPzfYb/Q1UWYKcmy SuqthdwWGctXG4vgnZtxsZZeC7TBq4e8cEtwLibU/un5OvDcehdhsXsJOLTG s1qb6uD1Ke4AEbklcLoduHN1+jtkZ3DfK3JcgiAP3vuKGg3g1/71HM5tCRxf Koq7ODSACdPDA1c9loAzbWN44EMDsJn8aJr2XYKetlhZ1YUGuLvL8+Sx8CW4 QPvOfCb+Jwi6jjK9/7IEu/JrM5cYGiHsfHGc/eYSaCwIZd+fbALPftNWcX8a HNtIzjqW1AI0DeW4O0E0GLVnHvIvbwHbPH7rhGAaTJRtudE7WuCmX886dyQN ni6PxEqyt8IZsRtH1tNpEBkuXhrk1gr/XPQd6htoMDU+r6Wg1wauO7V33dm5 DH9cLhez7esAB6XT2vFhy/Ak6ObMp54uWE9Qs5wKWYF2TaWZ5l+D0GwfY+GW tAqEuZD4uNujoKhxhN6XuAavHJ4y0VsmoeGCYgaK/Qf68vMNjDyzkJoXrTiU tQ6GOI1tUzGsjjduinXmrENpjthiicwCnLhw6EBTwTpcfHIQx6W4AOWdSZsl ZetwdqXdPFdjAVq3s76++28dCjNKjxdgdc+oU3nh3NQ69C56ytbELYApdegq SWwDDif4mzXvWIQj8qmqEVIbIPHaQMCHexEmvKzlXstuwAQ9lVWCD6sTruk9 j89swFjoKWV74UV4dXr5r67WBrQbrVzNQ4tQ4k8w276/AZwRkb93YXW696iE jdnHDXg4+4WRvWMRQkJfGX7M3oBzjC0Wjr2LwMY0pUrL24DPcjc7m4cWgYHy 8UBQ6QbMi6nOuswtwnS8yK+i/zbgUuOfOnPiEtTuP3pi5+wGGM+erMk8vQTO 3PtXymQ3wbD2QvJI6BLM+TwZYlHYhDcMtRvKUUtgs9DZdPXsJtyNlL0fHLcE Fs2R6ePnNyFqvNtqT8YSXAree2O3wSb4dZnuKixfgqNsXOU2bptQJVnXcnZk CVoYic/5yjfBhFFYS0mCBrPZ0WZXqjYh9Xgti9EJGrAai58NqN0EH+0xw3vy NED5OjRaI2b/gEOMnRINyJbhd5v7NmGZfIyD9RINXn07oh2wvQlylzrq7e/T IO1RoUglbguOzabtX7SlQc0BdfwyYQscT22k37enwbrT/QpLzi3wfl5lcdaN BveO5UqrHN6C/3ZeqbznRwO1F8p7llW3QOif/sxYLA0sZH7Pi2tsQau4SFZD Ag08+ix+WWpvwaSm3PWkJBrkn/Tzb762BX+l3tudzKCB4NjPtSyrLajOv7N3 KJ8GSqEm7UP3tkDEOKXdqYgGRiqzeXwPtyBeLer2xhcaBEdwPQhw2YKgfb87 p8ppsKl+vc/Sfws858PKr36nAe/SZEl00BbIhiLvd/U0kEvwiGgO3oKDylfm vv+kgc1qvK5K5Ba8+Wfzh/s3DbsnR6v5Mrbg6YmDJ6X+0oB2zS3+yqct2PmO n+tAFw12MbB6BORugbKJm89WNw3Ur0vILxdvwWhnMXdyPw2KiE5pzQ1b4GZV mGQ/SoMxT5+Zyl9b4MFbGz07hvmz8FY++88WFEmQHtyeoIFn16eal11bcEpj PkJmCsvP5TLWx31b0Ptr33TQNA0Gqxuu3KVsgUqN4+6eGUzfzLF+1ckt0L0c 12w+TwPXQ8tCMjNbcN/a2TJsgQYZobiHAguYPabgyq+LNNjhIbixsbYFzhLs Tes0GrRoG+8rItIhKkiQl+kfDfBV98yS2enwfiC7YRrjU/Juqe846VDOGaOA vQAx/GFydrx0aDp2X9VlkwaNIUnuJvx0qDqk33tmiwZ0fF61liAdcFJkiVWM b8380hURpUPlUYWpa9s0CL3VG7FXgg6wt86QhnFtO7UPd4IODUrPnF4xLMPK xX/HFuXooOAmh/gYl0G0kmA7qECHtzGFZXEYG8vyFDSdpYOGx8gIL9MyvE47 tl4OdLi4QC4Nwrhyv9y5rPN0YO5jU1rCeD74XGC0Bh0eS6xb6+GW4Qjuyu8A bTqIDL5UzsBY382Mx1WXDpu7WspoGPtP2ZpaXaMD9/wyRQG/DMXmHil6RnR4 1340xwFjauvLKXSTDiZnw48kYcyvGSUrbU6Hxu/BZxsw1ilPe3LwNh1OXrL4 N4bx0xNFVTus6fCs1ermBsa5Kd8I6zZ0+BzLdIuFeRmGeFt0Juzo8PBYFisR 4z1vBsM7HOlwVLRHnwFjdca53lpXOoRn7ledw95/7LJ1tMCdDkxrm81tGGdO 7niQ6I3FlynImIdxr+n+/LfP6TCULd3iizFHi+g/L386SKoNnL+MMVJXQLZB dDjPOm+wE2PH0gsBxsF0EFuVJNZi8adI6TdphtLhz317YweMO5Is9ypE0IF2 JObSXoyJ+xxMhGLoQL0c3Z+D6Xvm1dPk3fF0cPK15jyHcZxTrMx8Kh0ImSHX NLB8NY1nPu7/SAclTt475Vh+GUxKvjZm08HC8QePKMZWah2XPxbR4YeTy81h Og0iikfCIkvo4OqzOSuLcb3EUs+LCjr42JUffYLVk8ReThvLOjqcLXJ1nNyg we6csk+pDXSI3SG5ixHjdU3ruYlfdOCf2srYidVrvWel86MOOujAUAfzGg1y eGy+5HfTQfZGpO3CCmYvd+/6cj8dNnQymVqWaWA1YvvUc5wO94/2yzku0UDb m7fm6xQd7ngd/iOD9Y8sby0eN4/5l0dwGsP6jeHSgaCXa3Rw0StokJqlQVxB Q1gE6zacbm6eOIv1s99ll79dO7dBXxX3Jxnrd9txwf0HubdB8MyDBgZsHpw5 8Dghef82dIR1LURTaNDxXDgzV3wbXL7nGlzE5kkFf8v0kvQ2FDyMX7rRSYOU z17SCvLbcGbRKs+8gwaO1LbCCqVteKDuF67VQgMOPd+vPy9jHNyuGo/tActT Ukwcetugqko5fP0HDXpfdKtdNdwGmru3PKGOBpklMj//mm3Dy85n22pV2Pw6 PNg28mgbnr2t8YLPNPCeV6LS32H+Xp/vkiXR4E7QhIRqxDaUply0OBdHg0vH wh69iNkG7oK5yxdiaLD/+hRtR/I2TFbr2EmG0eDz1+ht3sJtcB4RlnkaQIO5 4JU9ch3bcFLE+rYEdp9Mzx+qkezehuQorv7mezSg6mk8Eu3fBmuXf0a2d2gw whPVcHBsGxZ5hW8EmtGgO17Rm7iyDaGPRRgNrtDA0qhyaZaNAV1NprxTk6XB ZWtG01oxBvQpbz4odg67P6PCC6olGFC+v+b941NLoNVwnO2rFAMqp9/uyR5b Ak1xvS8lsgxoqSI5JK5vCVTnkrhyzjCgdpu93bz/LcFpN7Xv0VoM6HrHhTHf FOz+DQiQfmTDgKq2nc4YXsX2wg55b0tbBhR06GzIpvYSVAkNNRrYMaAKK7eg D+pLYFarZKPkyIA+aGv4fzu7BDGMiyms7gyIofHqtXKhJeD2NNmf8pIBnX97 TchobRGYHGSYuzIY0EwTrtkyahGGjHu6VccZ0MXdtpEedQvArmyUbjHJgHze zztMVyzASYFWJ+8pBsT79vS44ecFCBz+yV46x4DIupa/edMXQNq2VEVmDbM3 /F/71cAF8PSKThJgZUQSfz36ki4uwF6Skc2mGCN6KY5E99TPg+Zo678iO0ZU 90PgTP/DOXjseOcezwwjSn7J7JB3agp0Pn/Q4nFlQgGjRsu2GWNwb8lye+9j JqRGZH2DixoD3xNihXvdmVDPod4WUsAYFGcWH9zrzYQExtTq5+6OwZGE9vnd /kzoU131EkVoDFYCdkVyRTAh5n9Cm+KpoxB/w3eY/TMTulrXL73+cQSKI7Si 2IuZkGR0OD4sZgRaW7kus5cyoZP/Ue0UXo0AUYf0eUclE8I/O2/2wXYEHFUr XrJ9Z0LD1XZ83dIjoC6+Kk3sYEJNnLkW6sXDMLtp44lbYULcGQUExz9DcOO6 9vF/q0yo+7CSds63IagtEO+Y/ceEvnl43VwrGoJom2np7i0mZBZ5WpocMwRq nQ+Hc5lx6JP3sbJMqyH4UGCvZbYXh05lEMZX1ymgaePKWyKPQzz17r8sZShQ UGdYRz6FQ5Y0oSRlIQocOqzgmHIah9RyPAOF+Siw9Hf1v7dKODQy+OrXEUYK xF948vSuGg5p4jjYf/wZBJqg59hufRyKbRH82OgyCIl/fQrtnHCIdCZV1zl0 AMbqTgwEu+CQ4YGxxBOeAyBROMCa44ZDKo2HSNx3B+BziLL5nAcOvXfQkNI8 MwCNF/+x2vvhUFdFvKXXSD+sldmbO4Tj0FskUy+J+kElUyDoXSQOlTAlDetL 9INvVFNhXjQO5am8rE7m7QcOFwm2xTgcYrJURCULfXBUaqLQMQ2HVlwHor6n 9oEOyZzN+QsO7UYaCn57+yAsmONkWAkO/SLLXjuJ74MuzwrzwjIcoije2dy1 1AtWNw4U0b7iUOkbLzPVP73whPuvuUs9DgXyVQvHv+2FFD+dItcuHGKrqB1W 39MLVMetgYgeHGoeRIaxzL0gfesT25c+HPqacKiZf7UHSpXZLFYpOHT7Pptk QncP/F6pY3tMxSGuEfHKrOQeWL+nbPFkA4fccx4U0ZR7QKtMDLls4RD+v2bR Jtke+LCTV9BhG4dEjdz2Non0gFL+4sA9HB7N+t96fY67B7w30s2v78CjW4W5 KmsT3dB0ORz0d+LRHwXGRpaBbhAgPRe4sguPkmL1pZXau6FKzXRAYzceGaZr JR6o6QZcMLe5wgE8yjssr0aO6wb9wW0VuYN41JOkEk4L64YU2ZlD0gJ49C2k nmD5uhvU//7oFz6KRwc/jTvke3RDoKCXGY84HqVcqJQSM+mGTkcbFW5JPNKN 2G+Zqd8Nx+uMDnFI49Gd15T5q5e74ed92X5mOTxytzY7vQ+6gb1g3HT5DB4Z uMkwexzrBhPmduUFJTySuLGUdepQN2Qb1RycUcGjhEK5Dj7ebtDZjO0bUcWj v1UD3wzZuyFeJ6hiUA2P6rhn3+SydMMcyS2uVx2PLMa+TsgwdkPIBT3TNi08 4tnVapy10gWDkaDcfAmPZB3sXZMXukCGKnGwUQePchVein+b7oKWYELfNz08 4qB/tX4y3AV7OstNCowx/w6cguqWLrASy1TKMcGjq7ZJsNLUBUWekfxZZnjU clOhT++/LjA87NibZIlHvjOnpp/XdkGak3l5vBUedezluWlY3QWrdZdiY+5i epWzWF6t7IIoGxGTUBs88ltrla4s7oKJ8j1KwbZ4ZMbasiD9uQsUdzHxB9nh EYv1MdWGgi4IujW38cIej/ROJR4MyuuC7oLeHh9HzH5b6zPHnC4QZ/lZ5uWM Rw+/b1o/z+4Cz+tfPjxxxSOnJK7fJVld0JiZ4uHyGI+kmCryeDO74ODWu5sO 7njUbme2IyGjCzSHLpdEeuKRucuwvmx6Fzj/YN1X6Y3p3ytNXUrtgoRPdc4j z/DIVvFk7XBKF/x859PC5otHxSpePYwYL7sqn5B5gXH6cVGd5C4QNPn3xigA j2wO0xLrk7pA+1zRlNdLrN5OSiEHjF2FHS6mvMKj9VPV/zQwTtwhmf7zDR6V SkjVXcK4cX4Cv/AWj5qr3kQ9xXitPcVyXyge9UmE3B/E+GiZRZVyGKbncS/J R5g9HRL/IasILH/9cl3imD/uLzo9gqKw+v0tdosH8z/VJqwrNwaPdrU9KpFK 64Jm3SsKf2PxiMyY0e6Mxbshzx6+FY9H0sm7Pk5gegjvr188mohH2WLuwkGY Xle3fa9oJeNRspAeuvEJ03cEyPapeKQiGz1hQO6C9IaNHZHpePSYNs75LBer J/KX+xUf8aiT3S7zb34XHH8iLcRGxqN87z9LHFi+9c2mnp/IxaPvFQx+s6Vd 8Ox8+qBhPh5Ncu5Q36jogo6dArHJn/HokGLzgVisnhiXuv81FOMR79f37Cfq u0CiM8JovhSPtgvOT85j9fc8iWO38lc88uFePvCvtQuyA37a367Go68virRR Zxd02vo3vfyGR9rug/sLe7tASoH+suMHVs/RduqHx7rgBn/p+GYDlh8+jSf7 p7rAj9H1wtFGPKI3Oq/BfBf0/DfDYN+MRyZeJ/12bXQBS95Hs4gWPPrgRrtd wtANshF3ysvb8Eg1y+LUW6wfAy363Fi7sP4q2GNQyd0N8suNs0kUrJ7eVv4W kewG8+7ASw3DeHT5aUyclHw3BH1Vy5wbxaPXH45EWpzthsGX5XeUqFi+x2YT L2h1w5tDn3rbF/Hos34MJ5dNN4xpvPpJxDMjhYr6xvd53WCpbSEoxMKM5kdG bLjLuqFP56TrOSIz+ts+2F1c2w1tBgOH3dmZkWudWb5nZzfU3JZ7MrWHGUmI 1H/pZeyBuKc9Ik1CzMhx0S918GYP8PrmelFFmFHrv4K2RuseCPN/0coixowM 8w7m9zv1QNAb6acgxYx2edRQHF/3wOMPvh25p5hRiUfB2PWvPaD/RfzFew3M v6dME2vivdBcytCTc5EZSc5f/Ch5phe0K9tPNGozI97s3ZEvNHtBte5pL/4K 9v61w9rxd3rhRGurnOt1ZpR4a+iCXWIvsM95DF2/z4w0DhoNWwj0wTfhRjj0 ihldDxK9d06uH7SCB7R43jCjPert4epq/dC8vGjA8ZYZZX4Y5rtj0A/9tXy2 9FBm9OeposuMG3bfWlpH9ccwo3v/hXwQruwHiQSmhfhMZqTaHDvPrTsAEfsU kwR+MqPXCum1tWgQbIhp+MOsLKjGIfDaXDAFvpCOKX97x4LaCvTnBtNG4Ni2 mkf1exY0ZBciGZQ/AiGmd0q+hrOgGweLD8pUjsC9/Wkny6NZ0MOEokC39hHY HyYiVZTIgjS6XpUM4UbBM0BMID2PBTF93DGx22IUVO1OML76w4Lq3bNaqXvG gNx4BV62sqC7u9M1WQTH4IC4g1dAOwv63cVPOCA+BrTxvH++XSyozGzsj/S5 MUi9JbfoSWFB/H6mxUwPx4BocGrYboEFPbnl9Ebq2xg0nVWq0+MiID2vGouU e+MQVOyyob6bgLjjrn50cBwHjZM5Mmf3EpBOb/lJec9xqJI6En+Uj4C4nE6F Rb0dh4LDRDeaIAHJ6ot87S4ahyhCm2jECQI6HxUWI8IwAQZ+O82DZAkIHUl+ osg6AdyMGuHYlw6K8DEKUOGegFfrJYzWpwnotI1B5uFjE+A9k9CtgAho1/EN B02NCbjd+uB1ly4BlZnOo42gCRC8klrz6yoByeTpxpx4PwG9jf1r1dcISNRe aK/Rhwkw/H71TqYRAZFvmc64Zk2AZomCioc5ATm1N8XRf06AVAJunv8RAQ2Y bvzlIkwC9YCyMJcDAU1flpHQ4piE9ChXE2YnArr/w4PksHcSBEMn62dcCci6 fM7mzdFJ2P3id2KlNwFRys7xLKtMwprNh2sWwQTEMankct9xEt66JxOehmAs +mIP65NJEA7KKosLxeLVbXgZ+nQSDD6WHe2JIKC1UxHGlq8nIX+8Z8kggYAe 4HxvLKRMwsXV4XTnRALa0JCx7cmchEGW6ZvvkwlocNBAkJw7CbuEN781pxNQ 2shoG3v5JNha8Ydp5xJQkinz5aw/k4BzPqZpk09AZmRPzY6OSYjxldgMLCSg 2Ov6xRM9k9CQpGT1vZiAXu9dsfg2ivlHMZE/V43lqwXXrL02CRXzVhPm3wgo iBhnTd6cBH2Gh7HedQSE+5uis8pABV8BL3x5A5YvAp/HWVYqDJrGtZ1qIaBj DcfuvuSlgtvD1ECDNgLWz00h+/mpwOGVreTcQUBFDY2zIQJUUI6tSMnrxs5f 8S6REKZCW1bd9eZeAoo6PT949TgVbMt+sc/1E1D69xN5NyWoENPd5ywxTEC6 d7S+8ctSsX1lVFR7lIC+V/JXt8pTof7fTO/9cQJ6mpI3YKdAhVVeulr6FAFd HW1bu6JEhWBRln91MwT0LTA5N1KFCsKnObJH5rB8rhThahAV9I0O7T1CI6AP 47TVKjUqTN0VbkArBFTlX2AUrk6F565SXuZrWD5aun9f0qTCfv9TMt7rBAT8 gmj8IhXywlVGYzcJSCzGKtBKmwqaqerRZXQC0qguCqy9hOlTqHO5m4GI5KIu HyboYPrUGjL+YyKip+zvZSV0MX3azIr2MRPRTY39cXJXqJA6fPf+KQIRsTOl njt4lQpKS3YHDViJyKD7COMkxm1Mbn+cdhCRdVpeeYQeFR5wP30RupOIftXH GQhfowLTkQDFvF1EJOpnmR2JcYzM25nfXEQUqJOZSsVY5lxk4uxuIio4piso oI/pdyXBYCcPEe3vM96Wx9imdrSSwEtEPOLh+ZIY7zwtIcq0n4jUUiXf7MA4 N8vx3eYBIsL5qrg1YefpCZSsrxwkohJ5wg1XjGmh27cXBIioLG56Pw7jCBb1 X1OHiWiHzpNUZ8zf0+6vT40dJaL1MlPKTyyenpmWhEEhIkrzsv/CjLH3LT7W HhEiOv+czCmE6SHYbu7YfhzTT/tshyimV41mWs9vcSJiFbq1wInpaVU+rfZT koj0LN5p92F6s5yQI9dKY/EHWTW9wfLxMfnJvq8yRJSfEnP7iBYVZoNYqAUn ieiO7ortKpbfEPqla2QFIvoifLtI4QIV5Bzfl2coElH7dHXxzfNUeHxD8G2c MhEl3CDF6ACW/1931yKBiKqzsnQOKlOhAmXfCj1HREV5Vfd+n8H0Fz0jH3CB iILlRj36TlIh5cOzOB8NIrqR9J+2ohwVNHb9YPG8SESe+2ykH5+gwuuVa132 l4nonfElSrwYFfbWPfQ2NiAiWfn7dW8OUqH4dOG4vhERqd/5RGDYTwXjT+tX dG8QkQMHvUqfhwrx7wOOqpli9bAj/3IqBxVELRPrJe8QUWHTtf8GtybhZ/u4 jKg1Ebm3/K6y+jcJDy9KfThyn4gEzLI+/KRh8+dE2cN9D4nouANT+dmpSVDa buNmdCGi23/qfuZh86Pf8YDnhisRHWWO2Hkemy8+Y7dGlx8TkavO45yi/ybh +6/ZL1RPTA/it2aVqknQjSWatvkRkTgLU0d/+iRYKiqlp4cRUQOj8YymwyTc n/m13BtBREYN2Y477k+CfaK5Gnc0lh+bvR/TLCbhKasvxTOOiK765lLu6k5C bFfDAb00IppnEUlgF5+EjidGIZtfsPqIfK4w0D0BfZKT/TKlRORj/ZRbqHkC RijuktblRCSv0ZCiWjcBSxfjf/6pwvz5SynD50wA5/5RfHoDEY0phpglP5sA rVLHJ1d7iKhT17UH8U/AVTt8vX8fEdGNzVs2OSbg+pEInvIBIjK5t9X5lnEC rINKCoRHsH56vXv1zNg4+BkzzG5ME9FBt9KilOxxqFx/Y5lGJ6LZwJP61fLj UEcWyOthYEX2dwbtpo6NQ6Nl3jYnjhUdL/mjMb1nHHp+tsV6EFjR6sWLEo60 MViLOfD3Cicrti/4RgfnjcG2TraQPzcrktoc87IjjQELDpzL9rAix71KfEJv x2DPA0suYT5WpLCzwY3HFtsHBGjmNw+wItJzW+WrxmNwpPUFOeQgKxrO76y0 1BwDsYB9W3UCrOiHpChd69QYyJz9qL1xmBXVXfqzxXpsDP4H6B/6lg== "]]}}, {{}, {RGBColor[1, 0, 0], PointBox[{{0., 0.}, {0.2243994752564138, 0.020270758434557612`}, { 0.4487989505128276, 0.054717454067120426`}, {0.6731984257692414, 0.05488860756337692}, {0.8975979010256552, 0.03290257769391373}, { 1.121997376282069, 0.1029586338269548}, {1.3463968515384828`, 0.3936038449829825}, {1.5707963267948966`, 0.8695139535382133}, { 1.7951958020513104`, 1.259966745338606}, {2.019595277307724, 1.256573585744253}, {2.243994752564138, 0.8554955559173824}, { 2.4683942278205517`, 0.4542094701383013}, {2.6927937030769655`, 0.4633424470847669}, {2.9171931783333793`, 0.7615831931453562}, { 3.141592653589793, 0.6986248784396664}}]}, {}}, {{}, {RGBColor[0, 1, 0], PointBox[{{0., 0.}, {0.2243994752564138, 0.0212797319405421}, { 0.4487989505128276, 0.05524144923498935}, {0.6731984257692414, 0.054119408510841495`}, {0.8975979010256552, 0.03229356630282269}, { 1.121997376282069, 0.10556117058450742`}, {1.3463968515384828`, 0.4004303031541758}, {1.5707963267948966`, 0.8763349242561869}, { 1.7951958020513104`, 1.2594814798490277`}, {2.019595277307724, 1.246070550357269}, {2.243994752564138, 0.8423739129531049}, { 2.4683942278205517`, 0.4506884347167825}, {2.6927937030769655`, 0.4725106705822081}, {2.9171931783333793`, 0.7702864929425516}, { 3.141592653589793, 0.6904156471977796}}]}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, ImageSize->{463.33333333333275`, Automatic}, PlotRange-> NCache[{{0, Pi}, {0., 1.313728368537592}}, {{0, 3.141592653589793}, {0., 1.313728368537592}}], PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], "Input"], "\n", StyleBox[ GraphicsBox[{ GraphicsComplexBox[{{0., 0.}, {0.2243994752564138, 0.0009460172117226294}, {0.4487989505128276, 0.0005283843293849913}, { 0.6731984257692414, 0.0007368120691636157}, {0.8975979010256552, 0.0007882221913285692}, {1.121997376282069, 0.002010062643175714}, { 1.3463968515384828`, 0.006018695566003374}, {1.5707963267948966`, 0.006440970251979206}, {1.7951958020513104`, 0.00011952189749386832`}, { 2.019595277307724, 0.0091478301985215}, {2.243994752564138, 0.012061975574962358`}, {2.4683942278205517`, 0.003607793057722408}, { 2.6927937030769655`, 0.008390457897552994}, {2.9171931783333793`, 0.008719088540187991}, {3.141592653589793, 0.006725715964678858}}, {{{}, {}, {RGBColor[1, 0, 0], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}]}}, { {RGBColor[1, 0, 0], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}]}, {}, {}}}], GraphicsComplexBox[{{0., 0.}, {0.2243994752564138, 0.00006295629426185737}, {0.4487989505128276, 4.389161516064888*^-6}, { 0.6731984257692414, 0.000032386983371809897`}, {0.8975979010256552, 0.00017921080023753505`}, {1.121997376282069, 0.0005924741143769063}, { 1.3463968515384828`, 0.0008077626051899434}, {1.5707963267948966`, 0.0003800004659944012}, {1.7951958020513104`, 0.0006047873870722587}, { 2.019595277307724, 0.0013552051884624383`}, {2.243994752564138, 0.0010596673893150665`}, {2.4683942278205517`, 0.00008675763620358268}, { 2.6927937030769655`, 0.0007777655998881805}, {2.9171931783333793`, 0.000015788742992572935`}, {3.141592653589793, 0.001483515277207914}}, {{{}, {}, {RGBColor[0, 1, 0], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}]}}, { {RGBColor[0, 1, 0], PointBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}]}, {}, {}}}]}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, ImageSize->{462.6666666666658, Automatic}, PlotRange->{{0., 3.141592653589793}, {0., 0.012061975574962358`}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}], "Input"]}], "Program", CellChangeTimes->{ 3.8697168047601957`*^9, {3.8699015362353296`*^9, 3.869901655762166*^9}, { 3.8701037352671075`*^9, 3.8701037368175106`*^9}, {3.871014192560913*^9, 3.8710142620168858`*^9}, {3.8711031888751507`*^9, 3.871103214106594*^9}, { 3.871107708489658*^9, 3.8711077866741295`*^9}, 3.871108552034906*^9, { 3.871448649190603*^9, 3.8714486509427032`*^9}, {3.8714487068409004`*^9, 3.8714487830722604`*^9}, {3.871448965648703*^9, 3.8714490173916626`*^9}, { 3.8714512727686453`*^9, 3.871451296847022*^9}, {3.871454723513014*^9, 3.871454811128025*^9}, {3.8714559095778522`*^9, 3.87145593681841*^9}, 3.8715214648260136`*^9, {3.871542507355337*^9, 3.871542713600134*^9}, { 3.871622445219776*^9, 3.871622524091287*^9}, {3.879747534495507*^9, 3.8797476000312552`*^9}, {3.879749951885144*^9, 3.879749983594767*^9}},ExpressionUUID->"a023ff73-a732-4406-bafb-\ 91e120da8664"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", RowBox[{ RowBox[{"Metoda", " ", "Rungego"}], "-", RowBox[{"Kutty", " ", "rz\:0119du", " ", "3"}]}], "*)"}], RowBox[{ RowBox[{ RowBox[{"RK3", "[", RowBox[{"f_", ",", "a_", ",", "b_", ",", "y0_", ",", "n_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "h", ",", "x", ",", "y", ",", "k1", ",", "k2", ",", "k3", ",", "points"}], "}"}], ",", RowBox[{ RowBox[{"h", "=", RowBox[{ RowBox[{"(", RowBox[{"b", "-", "a"}], ")"}], "/", "n"}]}], ";", "\[IndentingNewLine]", RowBox[{"x", "=", "a"}], ";", RowBox[{"y", "=", "y0"}], ";", "\[IndentingNewLine]", RowBox[{"points", "=", RowBox[{"{", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"x", "<", "b"}], ",", RowBox[{ RowBox[{"k1", "=", RowBox[{"f", "[", RowBox[{"x", ",", "y"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"k2", "=", RowBox[{"f", "[", RowBox[{ RowBox[{"x", "+", RowBox[{"h", "/", "2"}]}], ",", RowBox[{"y", "+", RowBox[{"h", "*", RowBox[{"k1", "/", "2"}]}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"k3", "=", RowBox[{"f", "[", RowBox[{ RowBox[{"x", "+", "h"}], ",", RowBox[{"y", "-", RowBox[{"h", "*", "k1"}], "+", RowBox[{"2", "*", "h", "*", "k2"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"y", "=", RowBox[{"y", "+", RowBox[{"h", "*", RowBox[{ RowBox[{"(", RowBox[{"k1", "+", RowBox[{"4", "*", "k2"}], "+", "k3"}], ")"}], "/", "6"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{"x", "=", RowBox[{"x", "+", "h"}]}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"points", ",", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}]}], "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", "points"}]}], "]"}]}], "\n", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ RowBox[{"Metoda", " ", "Rungego"}], "-", RowBox[{"Kutty", " ", "rz\:0119du", " ", "4"}]}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"RK4", "[", RowBox[{"f_", ",", "a_", ",", "b_", ",", "y0_", ",", "n_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "h", ",", "x", ",", "y", ",", "k1", ",", "k2", ",", "k3", ",", "k4", ",", "points"}], "}"}], ",", RowBox[{ RowBox[{"h", "=", RowBox[{ RowBox[{"(", RowBox[{"b", "-", "a"}], ")"}], "/", "n"}]}], ";", "\[IndentingNewLine]", RowBox[{"x", "=", "a"}], ";", RowBox[{"y", "=", "y0"}], ";", "\[IndentingNewLine]", RowBox[{"points", "=", RowBox[{"{", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}], "}"}]}], ";", "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"x", "<", "b"}], ",", RowBox[{ RowBox[{"k1", "=", RowBox[{"f", "[", RowBox[{"x", ",", "y"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"k2", "=", RowBox[{"f", "[", RowBox[{ RowBox[{"x", "+", RowBox[{"h", "/", "2"}]}], ",", RowBox[{"y", "+", RowBox[{"h", "*", RowBox[{"k1", "/", "2"}]}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"k3", "=", RowBox[{"f", "[", RowBox[{ RowBox[{"x", "+", RowBox[{"h", "/", "2"}]}], ",", RowBox[{"y", "+", RowBox[{"h", "*", RowBox[{"k2", "/", "2"}]}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"k4", "=", RowBox[{"f", "[", RowBox[{ RowBox[{"x", "+", "h"}], ",", RowBox[{"y", "+", RowBox[{"h", "*", "k3"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"y", "=", RowBox[{"y", "+", RowBox[{"h", "*", RowBox[{ RowBox[{"(", RowBox[{"k1", "+", RowBox[{"2", "*", "k2"}], "+", RowBox[{"2", "*", "k3"}], "+", "k4"}], ")"}], "/", "6"}]}]}]}], ";", "\[IndentingNewLine]", RowBox[{"x", "=", RowBox[{"x", "+", "h"}]}], ";", "\[IndentingNewLine]", RowBox[{"AppendTo", "[", RowBox[{"points", ",", RowBox[{"{", RowBox[{"x", ",", "y"}], "}"}]}], "]"}], ";"}]}], "]"}], ";", "\[IndentingNewLine]", "points"}]}], "]"}]}], "\n", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ "Funkcja", " ", "do", " ", "por\[OAcute]wnania", " ", "wynik\[OAcute]w"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"PorownajRozwiazania", "[", RowBox[{"f_", ",", "a_", ",", "b_", ",", "y0_", ",", "n_"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{ "dokladne", ",", "rk3", ",", "rk4", ",", "bladRK3", ",", "bladRK4"}], "}"}], ",", RowBox[{"(*", RowBox[{ "Rozwi\:0105zanie", " ", "dok\[LSlash]adne", " ", "za", " ", "pomoc\:0105", " ", "DSolve"}], "*)"}], RowBox[{ RowBox[{"dokladne", "=", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"y", "[", "x", "]"}], "/.", " ", RowBox[{ RowBox[{"DSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{ RowBox[{"y", "'"}], "[", "x", "]"}], "==", RowBox[{"f", "[", RowBox[{"x", ",", RowBox[{"y", "[", "x", "]"}]}], "]"}]}], ",", RowBox[{ RowBox[{"y", "[", "a", "]"}], "==", "y0"}]}], "}"}], ",", RowBox[{"y", "[", "x", "]"}], ",", "x"}], "]"}], "[", RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"Rozwi\:0105zania", " ", "RK3", " ", "i", " ", "RK4"}], "*)"}], RowBox[{"rk3", "=", RowBox[{"RK3", "[", RowBox[{"f", ",", "a", ",", "b", ",", "y0", ",", "n"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"rk4", "=", RowBox[{"RK4", "[", RowBox[{"f", ",", "a", ",", "b", ",", "y0", ",", "n"}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{ "Obliczanie", " ", "b\[LSlash]\:0119d\[OAcute]w", " ", "bezwzgl\:0119dnych"}], "*)"}], RowBox[{"bladRK3", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"rk3", "[", RowBox[{"[", RowBox[{"i", ",", "1"}], "]"}], "]"}], ",", RowBox[{"Abs", "[", RowBox[{ RowBox[{"(", RowBox[{"dokladne", "/.", " ", RowBox[{"x", "->", RowBox[{"rk3", "[", RowBox[{"[", RowBox[{"i", ",", "1"}], "]"}], "]"}]}]}], ")"}], "-", RowBox[{"rk3", "[", RowBox[{"[", RowBox[{"i", ",", "2"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "rk3", "]"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"bladRK4", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"rk4", "[", RowBox[{"[", RowBox[{"i", ",", "1"}], "]"}], "]"}], ",", RowBox[{"Abs", "[", RowBox[{ RowBox[{"(", RowBox[{"dokladne", "/.", " ", RowBox[{"x", "->", RowBox[{"rk4", "[", RowBox[{"[", RowBox[{"i", ",", "1"}], "]"}], "]"}]}]}], ")"}], "-", RowBox[{"rk4", "[", RowBox[{"[", RowBox[{"i", ",", "2"}], "]"}], "]"}]}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", RowBox[{"Length", "[", "rk4", "]"}]}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", RowBox[{"(*", "Wykresy", "*)"}], RowBox[{"{", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{"dokladne", ",", RowBox[{"{", RowBox[{"x", ",", "a", ",", "b"}], "}"}], ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Thick", ",", "Blue"}], "}"}]}]}], "]"}], ",", RowBox[{"ListPlot", "[", RowBox[{"rk3", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"PointSize", "[", "Large", "]"}]}], "}"}]}], ",", RowBox[{"PlotMarkers", "->", "Automatic"}]}], "]"}], ",", RowBox[{"ListPlot", "[", RowBox[{"rk4", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Green", ",", RowBox[{"PointSize", "[", "Large", "]"}]}], "}"}]}], ",", RowBox[{"PlotMarkers", "->", "Automatic"}]}], "]"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{ "PlotLabel", "->", "\"\\""}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"ImageSize", "->", "Large"}]}], "]"}], ",", RowBox[{"Show", "[", RowBox[{ RowBox[{"ListPlot", "[", RowBox[{"bladRK3", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Red", ",", RowBox[{"PointSize", "[", "Medium", "]"}]}], "}"}]}], ",", RowBox[{"Joined", "->", "True"}]}], "]"}], ",", RowBox[{"ListPlot", "[", RowBox[{"bladRK4", ",", RowBox[{"PlotStyle", "->", RowBox[{"{", RowBox[{"Green", ",", RowBox[{"PointSize", "[", "Medium", "]"}]}], "}"}]}], ",", RowBox[{"Joined", "->", "True"}]}], "]"}], ",", RowBox[{"Frame", "->", "True"}], ",", RowBox[{ "PlotLabel", "->", "\"\\""}], ",", RowBox[{"AxesLabel", "->", RowBox[{"{", RowBox[{"\"\\"", ",", "\"\\""}], "}"}]}], ",", RowBox[{"PlotRange", "->", "All"}], ",", RowBox[{"ImageSize", "->", "Large"}]}], "]"}]}], "}"}]}]}], "]"}]}], "\n", "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"Przyk\[LSlash]ad", " ", "u\:017cycia"}], "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", RowBox[{"x_", ",", "y_"}], "]"}], ":=", RowBox[{ RowBox[{"2", " ", "x"}], "-", RowBox[{"3", " ", "y"}]}]}], ";"}], "\n", RowBox[{"PorownajRozwiazania", "[", RowBox[{"f", ",", RowBox[{"-", "2"}], ",", "2", ",", "0", ",", "23"}], "]"}], "\n", "\n", "\n", "\n"}]}]], "Input", CellChangeTimes->{ 3.946880522282609*^9, {3.946880881353177*^9, 3.9468809055298233`*^9}, 3.946881135780211*^9, 3.946881230280491*^9, 3.9468812623195133`*^9, 3.946881319778225*^9, 3.946881387846677*^9, 3.946881453139086*^9, 3.9468816320856247`*^9, 3.946881714518444*^9, 3.946881794550939*^9, 3.9468818506075706`*^9, 3.946881964186282*^9, {3.946882030557621*^9, 3.946882032414488*^9}, {3.946882083337554*^9, 3.94688210654881*^9}, 3.946882210583456*^9}, CellLabel->"In[86]:=",ExpressionUUID->"3d63913b-422d-4d07-9377-b2b21746a2cd"], Cell[BoxData[ RowBox[{"{", RowBox[{ GraphicsBox[{ InterpretationBox[{ TagBox[{{{}, {}, TagBox[ {RGBColor[0, 0, 1], Thickness[Large], Opacity[1.], LineBox[CompressedData[" 1:eJwt2Hk0Vev/B3ClKEUodVNKKkUlY0npkVKG6FKSlClXk1IaFLdQKkWXhCJp IBGJUiS8EwrJmJmMmc6uHM4+zjkO57e/a/3+2uu19vA863k+n/feay9x9bT5 Z7KYmJjsJDGx/x01yNxBkUiEebKacR8HIvM9+UuD+AIRivN+BdXLnEX6Gy3V EVqE7m5xxWTxQGivtHTtZYkQvH5NUsKvu1gvF9hc3iCC9QOTeplP8TDqZpdF vxLBVnnSJn2PN7C58S1Fx0mEQ+9nVQUWf8LdLS1ma/aLkPdLg1a3LsT3sf4+ VVsR7slvuKPbWoi9p6YsU7QQ4dHtgz5nh4rgYL8xVmw9c71T77QsuS9wW5Uc 8k1GBD/fuHnF67/CuzLwxOH8CfgLt9ZTt6oRwjrfwMmegPczZ+Wo8mo8lTy6 5cqbCahP3pL6S7oG5cRS4WHSBNYM7KhPCq2BSrpCXk34BFh0qe++0FpUhCXO 3Hx4ApueuBj2+NVB1aYkZY7sBIis2LH6FU3YdDJH4anUBFJkpyh3OzXB+laq 39qpE3CbNrfn+b0m/PspbLe5YBxNR8592C/RjBpt+zG/nnEkZdjEnOhoxqXZ g+as7HFE3a34eP1GK75/nzFY4DKOIBl604n4dgS4vc1POTCOyPgVgz8q26HB cbwbaTeOzb8jHOcL2xE0+/Wmo5bjkFOLyeKodcDQZl+o7IZxrLt2j33JvwOJ lQm6TrLjMNZvDApe2YkLZYZ+wnwhQueMGxv/04Xl+/t2974XYsXhQ0/1L3Sh ZiBsZVWmEFWeJX5zg7uwenpPdfwLIW72l8ndTO9C545byyyihGjR91fcKeiC eXF9afQJIXS0D709eLMbSh8956xfKMSp5X1u5lE9KJfXO2swT4h9+6ZFz0js gc8/glpDeSHa2bo9WW97UC917e62aUIEmqZJ13zvQZhtjLwNZwyPihS/ysj/ hDirSPZE+RgWk9KEnKCfGFBQlI7/dwwJJlpdBw/34v6Rdo9E7zHc4X3zTDzb i+0fEsqTvcbQkPXLtTWgF0+d14akH2HuH5wP2dheHEjZNiN/zxjUam21Hlb2 otLIc3rT6jFUvb3avFunD2+PF02d1SbAUFMZnfKrD/rKJ7USGwQwPdPnnsHv Q873eQcNawTQup3pFD+1Hx8Nj2ce/yJAwCaV9ZZK/SibJX+oJEOAsBtGj3Ms +tHxxuljwHUBjshWaEs/64eUUODDWSvA4lXSqnPMB3A7PSExWF2AicGlJpW7 ByD7j1WNynIBei09DS8eHIBCxRM1a0UBHJZOFUWfGoDyY9PGl1MEEH0RS5KN GoDetii9w018ONUqHe5sG4BziNZQ0xU+lvYG1V51GYRPZvj1b5f4qCJPl2Yd GURk68jCggt8XCtlmbV5DqJs9TuzpJN8XDlTaD758iB0vhnEn9/Px4vkzvPp 0YOQkNm2d7Y2H/n3PislVQxCed0zSmINH3QRHSxTN4iNjhJXBSv4YCsM3jnS MohTaSWvOpX4OKY/dne0bxBNVpbT06fzsXmeybsrYiykhu7N3dnJg+bMFl+7 tSx8zsqyMWrlod505TehLgud7X8N6DTwoFSc7hFlwMJczRaFBd94eP/wwadE Exb8qpw8B7J5KDVIEW5yYMFG7qjK9TAeHny/tcgskAVeuG8QCA92L++mq1Ww 0LewYHC7AQ/aZZIOJTUs1CdKWFbo8qDaXVSzv4GFNzl35NrUeNhrPOmAQwcL J7uexwhm88BZNlOznM1Ct9b3VL3+UajOPXfTW55CzYf5s/K6RvHu9rkv++ZS +GjidHpb2yj8ZV5GaChSiLMf1NtdM4pQ8dAZ2Uso7AsQw6ncURwrV0nfqkmh omp1dUrYKCId+XU7LCjk7vfS0Qlmnv9h5nFvKwopPVmROddGsVTcwCTWmkIQ z3h/qc8oouVKOMV2FLYq23f3uo2iR+zG6ZhDFLRfxJmcdBrFAdZt53PuFJR1 e57T9qP4x3ofy+QohYkdnh5Tdo2iuCBn4stJCtme1+glG0YhKf1rq/VFCs/5 ZXbJOqPYdv2ufrMvhairsjmaGsz8FrAW2l+mcObeg8tk6ShkTze16V+loIEM yYPSo/hjGe0YEEIhXubH/PudXMjJVa8kDymEOxDJDa1c2Os//KPyiMKVpMec pnou4m8YPxx/TMHV+FDlgnIuBmUSqu8lUFA53x/46B0XRgrhsc4pFOQLzbyM MrjY/WL9fWEqhcmyKU6dKVx0WnR8Ck2j0JV8wmDpEy6izBJKHmRQeNo2/Ccx mIst7gPBFlnM+Op72nZc5yLCo5F+ks2M7/22rN+fC/cp2d//vGfGl7vwTP08 F2sfRs/2yqVg49gU/vUUF1yPtMDEPArGKQb+Hse50LvUFFKTT2GJyfj+NGcu 1rE2BMoVUJANdzTd5cBFapNh4LJPFMTaoTdky4XERnrT2kIKHReuyGpbcGHx I5+/qpjC41TJz2/1uHhclXajsIRCGP/Im72aXIj8fXQjSyn4by97PKrOhZZc fItjGQXnjhDfDcpcjMZs3dD8lcLfa34faVbkwi+/UBRcTsHIZ9deXwUuBMsz OvS+UVg8R14rT4qLAx+D5bwqKMi4nFnkOJWLhmlbTk+pZPb/5fcZIhGNS1Uj UqGMfwv0+I8ENHodzvbKVVH4seNerxFNQ1EheMZtxhURvNrOPzTO3uUFiFVT yO+0L7gySONc/DlrD8Zxvgtji9ppuHXvV1xTQ+G/kks3/2mmcV8ovfQK48sK 7ecl6mgE3HSPr2R80tXI7XkljRN13KcKtRQcXz2xNi2jYR9qpraHsZVwMhko opFY3WkYzHizmdvqW6DxQm1jfw5jjaji+atyaNg8Kl3bzVipW1WyPJNGci5/ wZTvFGZqBnE8XtE4HamZqcRY+O9Ap/QLGlcrvorWMqZKzSvTEmgcfbZEYiPj 1rmpubse0cge9a/YzLj8kPSLoWgat8y1nP93Pjf95L07ETRqqr0+aTJOHa8M 1A6lUeB9WbiIcay5llftTRoLe64pSDBeNsO8rCqQhr7YqrP9zPxSvrqqVPjR eL7r54sixtohvj5ffWjk3/dBDOOcnRE1JedozNZPyTrG2Fj6pfrnUzSCl2tH 6zIu+1Z8pfA4s1/8oqM8Zv1s/vvR/NGdxj327LXvGDdZjWrnu9CQ4Zb+PsHY eZZs8IcDNALjQtIWM+6vXNmdbUdj0nrhma/MfvH+3n/3jSWz3jPNVOUY+8ud YaWb0pCP2LkohdlvyZrgrWlbafikmGkTxnN3540kbWDmX761yJapl7jZ9RaJ ujQabxpaNjL1tfz77/j4tTS27lCfZstY11Z5T9xyGqLUh2qGTD3mKmxIfaBM w2MmLyaJqdet9dZTohfQqO+mdsswtrG7mnlXjsaffIXXJUy9N8+LnXlnJo1d c2kXJcYujZlu/0nS8IwqPunB9Mcp+945N8c5UPhhn8n/QiHUwezc5QEO9O7N v1JdxMx3oes33x4Ofup4pvKZ/otr9Vl+sZ2D5nfnDi5knHYwte5MHQfpJX8d sWb6t9xp1rqjBRzEjW9J82H6fY/yyv/cczloePg11pvJg5YOo95DWRxMehlm 4PmBwqCLV5TjSw5sArPvWTH5Mc2tjrs7moOjWwZdKzKZfl7228o6goMnF1ps n7yhMO+nxHOrUA4a3dwXe76moOqub2d2jQNvoydmY68omBx5kLX5NAdjkxUC 6l8w+eThckHNjAOJzTGPY5m8/PGfY2zOVg6Sa7fVTDB5apDh8NFiMwdJezZb OMRSGKZtp53U4UDs8QF18WhmvfzM779W4mCLzuvNs8KZfAjXyd44PILzd6Sy lZi8js3UbC2nRtCY1z1jRQBTD/VrxBz7RmD0223SKj8K6QtWmvq3jkC6TqNP hcn/xc8WNhZ9HgFC7PRqvZj8yJrKs3wwgoqFX68ZuFDY3zx5YXvkCFzDF3sP OVJ4JxSRU2Ej+ODV5fjkANPvWwQ3wq8x4weqq3KY91Vb2e95DZ4jGOF0LXFk 3m+5bQ3rnbeNQHV8sYapAQVf8RfeXr+GISA1EVEyzP3RjhLO/cNobRFO7Z3B 5PXa2ZGW3cMYkHGJ1ppOwdzh39crm4Yx/ae/Xp44hb/eWP36UTSMO7ESyYk8 FjJdR1wtYoeh7b7qSXEnC78LNlktsxjGwYW9JjszWHDxr1xWn8QG66eVk952 FvY2PdrcFs8GverzvBxjFsy1T+3riWPDKoZ0bSQs6PbIhgxHsCGpsSh7nT4L 00xtRmQC2Ni+e8ub6eospM2qK9hhz0Zq1rNNK6RZGItrdnw/nY2y2tovNtXM 91bez/uxx4bg2/bpLG09iJz2lTNTVX4jLnZovG3RAJbKGhnviWNBzUiuwaSz D6/Vg451dffjyl5xcv9kL9qLM5TXrWO+cxMHs6p/9eDn6khtvOuGavWlquMX uiF3OXmdxqROTDwb2zO1oROr1/1Z/WykFdIqurt2mHbg6rZfVe8vNCD96LOg DuU2KOxJC7OfV4OWiqg17MwmvOYWzypZVoZjRfWvDXzr8azl5+2BwHyoLYl2 yuTU4KD1wsyWQwl4MhFk4mRWifdSvnWfzsUTJcu9Fz9+KoFe16RFAftAMrZN b/V8XoClQx/4Bp9KySHq75Q5k97BLL7pm9W+GnJdijv7qm4cTCzlxem3DcSr YF9sXFIMCXVq8NfMaiXbj12OdGW/IV+slKT/lu8kPRoPZnevKSC/lihcronp JibH9WRaBr6Qc2dXuYTO7SV7ZV+PCAIrSEOrrI17ST8567XSz6+xhjhf3NQn uZNFpC8rvHDSqieFq9bfKpz6m5gaak2NrGkiqtNz+xNMhwjHrH+Pz7o2opR7 3GRqEJuMrOs+ULitg4gJJid7dQ2TKm3rRnf5LjJqnedYvJxDtHQsD1oVdJMW XacFywNp0j2nsNIq4ic5ZScrp9LKJaZk9e06xz4yP6Jn3xQlHrHbe+xxlNQA SXN4/HzkAp9Ihe2M8mgeJHaGfqYleQJyyOqv5IvBFMlwPKFiIBwjtVfFzCR0 fxOe1Fbx97bj5PSODzwbsSFiU71xndL9CaIr+Zy7qWGISG2cUZD7cIIsGi+P ETYPkYKEZosD8RNkhtskkvtjiGheuOjyIG2CrDGNvLGxd4jILM4KmV88QRSL Ds83oIdIqYd2t8LwBHl/5wVZP5tNjKaphcnsFJH9XcZRWrvYhHeap5hmLSKH MxU3sW3Y5FXLl2eWdiLC1xB1pu9lk0Wv3D+EuIqIa/+vNZqObCK0TeiVuigi vQLnzxon2CQrfrGhZKKI/CTh/FXBbHJS+s+XxBQREffReMz6j01UvfNttmeI CO92/faUcDaJMD945FquiDyUM49Qj2ETL3bMXfFaEWlek7dWLZlN1B2OLYpv FJGLre/q+1PZpLNoQ7LxDxGJnpx7KSmdTf6+35gfMCAi2tf6v67IZpNpk5PM lvwRkZels870fWATHPf+/pEjIm9tjRWfg03O1213chaIyAkl/wL3Qjb5//8d ZLJC6RHVL2zyf42ZyDo= "]]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, {}}, {"WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, Annotation[{ Directive[ Opacity[1.], AbsoluteThickness[2], Thickness[Large], RGBColor[0, 0, 1]], Line[CompressedData[" 1:eJwt2Hk0Vev/B3ClKEUodVNKKkUlY0npkVKG6FKSlClXk1IaFLdQKkWXhCJp IBGJUiS8EwrJmJmMmc6uHM4+zjkO57e/a/3+2uu19vA863k+n/feay9x9bT5 Z7KYmJjsJDGx/x01yNxBkUiEebKacR8HIvM9+UuD+AIRivN+BdXLnEX6Gy3V EVqE7m5xxWTxQGivtHTtZYkQvH5NUsKvu1gvF9hc3iCC9QOTeplP8TDqZpdF vxLBVnnSJn2PN7C58S1Fx0mEQ+9nVQUWf8LdLS1ma/aLkPdLg1a3LsT3sf4+ VVsR7slvuKPbWoi9p6YsU7QQ4dHtgz5nh4rgYL8xVmw9c71T77QsuS9wW5Uc 8k1GBD/fuHnF67/CuzLwxOH8CfgLt9ZTt6oRwjrfwMmegPczZ+Wo8mo8lTy6 5cqbCahP3pL6S7oG5cRS4WHSBNYM7KhPCq2BSrpCXk34BFh0qe++0FpUhCXO 3Hx4ApueuBj2+NVB1aYkZY7sBIis2LH6FU3YdDJH4anUBFJkpyh3OzXB+laq 39qpE3CbNrfn+b0m/PspbLe5YBxNR8592C/RjBpt+zG/nnEkZdjEnOhoxqXZ g+as7HFE3a34eP1GK75/nzFY4DKOIBl604n4dgS4vc1POTCOyPgVgz8q26HB cbwbaTeOzb8jHOcL2xE0+/Wmo5bjkFOLyeKodcDQZl+o7IZxrLt2j33JvwOJ lQm6TrLjMNZvDApe2YkLZYZ+wnwhQueMGxv/04Xl+/t2974XYsXhQ0/1L3Sh ZiBsZVWmEFWeJX5zg7uwenpPdfwLIW72l8ndTO9C545byyyihGjR91fcKeiC eXF9afQJIXS0D709eLMbSh8956xfKMSp5X1u5lE9KJfXO2swT4h9+6ZFz0js gc8/glpDeSHa2bo9WW97UC917e62aUIEmqZJ13zvQZhtjLwNZwyPihS/ysj/ hDirSPZE+RgWk9KEnKCfGFBQlI7/dwwJJlpdBw/34v6Rdo9E7zHc4X3zTDzb i+0fEsqTvcbQkPXLtTWgF0+d14akH2HuH5wP2dheHEjZNiN/zxjUam21Hlb2 otLIc3rT6jFUvb3avFunD2+PF02d1SbAUFMZnfKrD/rKJ7USGwQwPdPnnsHv Q873eQcNawTQup3pFD+1Hx8Nj2ce/yJAwCaV9ZZK/SibJX+oJEOAsBtGj3Ms +tHxxuljwHUBjshWaEs/64eUUODDWSvA4lXSqnPMB3A7PSExWF2AicGlJpW7 ByD7j1WNynIBei09DS8eHIBCxRM1a0UBHJZOFUWfGoDyY9PGl1MEEH0RS5KN GoDetii9w018ONUqHe5sG4BziNZQ0xU+lvYG1V51GYRPZvj1b5f4qCJPl2Yd GURk68jCggt8XCtlmbV5DqJs9TuzpJN8XDlTaD758iB0vhnEn9/Px4vkzvPp 0YOQkNm2d7Y2H/n3PislVQxCed0zSmINH3QRHSxTN4iNjhJXBSv4YCsM3jnS MohTaSWvOpX4OKY/dne0bxBNVpbT06fzsXmeybsrYiykhu7N3dnJg+bMFl+7 tSx8zsqyMWrlod505TehLgud7X8N6DTwoFSc7hFlwMJczRaFBd94eP/wwadE Exb8qpw8B7J5KDVIEW5yYMFG7qjK9TAeHny/tcgskAVeuG8QCA92L++mq1Ww 0LewYHC7AQ/aZZIOJTUs1CdKWFbo8qDaXVSzv4GFNzl35NrUeNhrPOmAQwcL J7uexwhm88BZNlOznM1Ct9b3VL3+UajOPXfTW55CzYf5s/K6RvHu9rkv++ZS +GjidHpb2yj8ZV5GaChSiLMf1NtdM4pQ8dAZ2Uso7AsQw6ncURwrV0nfqkmh omp1dUrYKCId+XU7LCjk7vfS0Qlmnv9h5nFvKwopPVmROddGsVTcwCTWmkIQ z3h/qc8oouVKOMV2FLYq23f3uo2iR+zG6ZhDFLRfxJmcdBrFAdZt53PuFJR1 e57T9qP4x3ofy+QohYkdnh5Tdo2iuCBn4stJCtme1+glG0YhKf1rq/VFCs/5 ZXbJOqPYdv2ufrMvhairsjmaGsz8FrAW2l+mcObeg8tk6ShkTze16V+loIEM yYPSo/hjGe0YEEIhXubH/PudXMjJVa8kDymEOxDJDa1c2Os//KPyiMKVpMec pnou4m8YPxx/TMHV+FDlgnIuBmUSqu8lUFA53x/46B0XRgrhsc4pFOQLzbyM MrjY/WL9fWEqhcmyKU6dKVx0WnR8Ck2j0JV8wmDpEy6izBJKHmRQeNo2/Ccx mIst7gPBFlnM+Op72nZc5yLCo5F+ks2M7/22rN+fC/cp2d//vGfGl7vwTP08 F2sfRs/2yqVg49gU/vUUF1yPtMDEPArGKQb+Hse50LvUFFKTT2GJyfj+NGcu 1rE2BMoVUJANdzTd5cBFapNh4LJPFMTaoTdky4XERnrT2kIKHReuyGpbcGHx I5+/qpjC41TJz2/1uHhclXajsIRCGP/Im72aXIj8fXQjSyn4by97PKrOhZZc fItjGQXnjhDfDcpcjMZs3dD8lcLfa34faVbkwi+/UBRcTsHIZ9deXwUuBMsz OvS+UVg8R14rT4qLAx+D5bwqKMi4nFnkOJWLhmlbTk+pZPb/5fcZIhGNS1Uj UqGMfwv0+I8ENHodzvbKVVH4seNerxFNQ1EheMZtxhURvNrOPzTO3uUFiFVT yO+0L7gySONc/DlrD8Zxvgtji9ppuHXvV1xTQ+G/kks3/2mmcV8ovfQK48sK 7ecl6mgE3HSPr2R80tXI7XkljRN13KcKtRQcXz2xNi2jYR9qpraHsZVwMhko opFY3WkYzHizmdvqW6DxQm1jfw5jjaji+atyaNg8Kl3bzVipW1WyPJNGci5/ wZTvFGZqBnE8XtE4HamZqcRY+O9Ap/QLGlcrvorWMqZKzSvTEmgcfbZEYiPj 1rmpubse0cge9a/YzLj8kPSLoWgat8y1nP93Pjf95L07ETRqqr0+aTJOHa8M 1A6lUeB9WbiIcay5llftTRoLe64pSDBeNsO8rCqQhr7YqrP9zPxSvrqqVPjR eL7r54sixtohvj5ffWjk3/dBDOOcnRE1JedozNZPyTrG2Fj6pfrnUzSCl2tH 6zIu+1Z8pfA4s1/8oqM8Zv1s/vvR/NGdxj327LXvGDdZjWrnu9CQ4Zb+PsHY eZZs8IcDNALjQtIWM+6vXNmdbUdj0nrhma/MfvH+3n/3jSWz3jPNVOUY+8ud YaWb0pCP2LkohdlvyZrgrWlbafikmGkTxnN3540kbWDmX761yJapl7jZ9RaJ ujQabxpaNjL1tfz77/j4tTS27lCfZstY11Z5T9xyGqLUh2qGTD3mKmxIfaBM w2MmLyaJqdet9dZTohfQqO+mdsswtrG7mnlXjsaffIXXJUy9N8+LnXlnJo1d c2kXJcYujZlu/0nS8IwqPunB9Mcp+945N8c5UPhhn8n/QiHUwezc5QEO9O7N v1JdxMx3oes33x4Ofup4pvKZ/otr9Vl+sZ2D5nfnDi5knHYwte5MHQfpJX8d sWb6t9xp1rqjBRzEjW9J82H6fY/yyv/cczloePg11pvJg5YOo95DWRxMehlm 4PmBwqCLV5TjSw5sArPvWTH5Mc2tjrs7moOjWwZdKzKZfl7228o6goMnF1ps n7yhMO+nxHOrUA4a3dwXe76moOqub2d2jQNvoydmY68omBx5kLX5NAdjkxUC 6l8w+eThckHNjAOJzTGPY5m8/PGfY2zOVg6Sa7fVTDB5apDh8NFiMwdJezZb OMRSGKZtp53U4UDs8QF18WhmvfzM779W4mCLzuvNs8KZfAjXyd44PILzd6Sy lZi8js3UbC2nRtCY1z1jRQBTD/VrxBz7RmD0223SKj8K6QtWmvq3jkC6TqNP hcn/xc8WNhZ9HgFC7PRqvZj8yJrKs3wwgoqFX68ZuFDY3zx5YXvkCFzDF3sP OVJ4JxSRU2Ej+ODV5fjkANPvWwQ3wq8x4weqq3KY91Vb2e95DZ4jGOF0LXFk 3m+5bQ3rnbeNQHV8sYapAQVf8RfeXr+GISA1EVEyzP3RjhLO/cNobRFO7Z3B 5PXa2ZGW3cMYkHGJ1ppOwdzh39crm4Yx/ae/Xp44hb/eWP36UTSMO7ESyYk8 FjJdR1wtYoeh7b7qSXEnC78LNlktsxjGwYW9JjszWHDxr1xWn8QG66eVk952 FvY2PdrcFs8GverzvBxjFsy1T+3riWPDKoZ0bSQs6PbIhgxHsCGpsSh7nT4L 00xtRmQC2Ni+e8ub6eospM2qK9hhz0Zq1rNNK6RZGItrdnw/nY2y2tovNtXM 91bez/uxx4bg2/bpLG09iJz2lTNTVX4jLnZovG3RAJbKGhnviWNBzUiuwaSz D6/Vg451dffjyl5xcv9kL9qLM5TXrWO+cxMHs6p/9eDn6khtvOuGavWlquMX uiF3OXmdxqROTDwb2zO1oROr1/1Z/WykFdIqurt2mHbg6rZfVe8vNCD96LOg DuU2KOxJC7OfV4OWiqg17MwmvOYWzypZVoZjRfWvDXzr8azl5+2BwHyoLYl2 yuTU4KD1wsyWQwl4MhFk4mRWifdSvnWfzsUTJcu9Fz9+KoFe16RFAftAMrZN b/V8XoClQx/4Bp9KySHq75Q5k97BLL7pm9W+GnJdijv7qm4cTCzlxem3DcSr YF9sXFIMCXVq8NfMaiXbj12OdGW/IV+slKT/lu8kPRoPZnevKSC/lihcronp JibH9WRaBr6Qc2dXuYTO7SV7ZV+PCAIrSEOrrI17ST8567XSz6+xhjhf3NQn uZNFpC8rvHDSqieFq9bfKpz6m5gaak2NrGkiqtNz+xNMhwjHrH+Pz7o2opR7 3GRqEJuMrOs+ULitg4gJJid7dQ2TKm3rRnf5LjJqnedYvJxDtHQsD1oVdJMW XacFywNp0j2nsNIq4ic5ZScrp9LKJaZk9e06xz4yP6Jn3xQlHrHbe+xxlNQA SXN4/HzkAp9Ihe2M8mgeJHaGfqYleQJyyOqv5IvBFMlwPKFiIBwjtVfFzCR0 fxOe1Fbx97bj5PSODzwbsSFiU71xndL9CaIr+Zy7qWGISG2cUZD7cIIsGi+P ETYPkYKEZosD8RNkhtskkvtjiGheuOjyIG2CrDGNvLGxd4jILM4KmV88QRSL Ds83oIdIqYd2t8LwBHl/5wVZP5tNjKaphcnsFJH9XcZRWrvYhHeap5hmLSKH MxU3sW3Y5FXLl2eWdiLC1xB1pu9lk0Wv3D+EuIqIa/+vNZqObCK0TeiVuigi vQLnzxon2CQrfrGhZKKI/CTh/FXBbHJS+s+XxBQREffReMz6j01UvfNttmeI CO92/faUcDaJMD945FquiDyUM49Qj2ETL3bMXfFaEWlek7dWLZlN1B2OLYpv FJGLre/q+1PZpLNoQ7LxDxGJnpx7KSmdTf6+35gfMCAi2tf6v67IZpNpk5PM lvwRkZels870fWATHPf+/pEjIm9tjRWfg03O1213chaIyAkl/wL3Qjb5//8d ZLJC6RHVL2zyf42ZyDo= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2, 2}, {-0.9009088547970725, 1.1111206143553436`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], AbsoluteThickness[2], Thickness[Large], RGBColor[0, 0, 1]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2, 2}, {-0.9009088547970725, 1.1111206143553436`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], AbsoluteThickness[2], Thickness[Large], RGBColor[0, 0, 1]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{{}, {}, Annotation[{ Directive[ Opacity[1.], AbsoluteThickness[2], Thickness[Large], RGBColor[0, 0, 1]], Line[CompressedData[" 1:eJwt2Hk0Vev/B3ClKEUodVNKKkUlY0npkVKG6FKSlClXk1IaFLdQKkWXhCJp IBGJUiS8EwrJmJmMmc6uHM4+zjkO57e/a/3+2uu19vA863k+n/feay9x9bT5 Z7KYmJjsJDGx/x01yNxBkUiEebKacR8HIvM9+UuD+AIRivN+BdXLnEX6Gy3V EVqE7m5xxWTxQGivtHTtZYkQvH5NUsKvu1gvF9hc3iCC9QOTeplP8TDqZpdF vxLBVnnSJn2PN7C58S1Fx0mEQ+9nVQUWf8LdLS1ma/aLkPdLg1a3LsT3sf4+ VVsR7slvuKPbWoi9p6YsU7QQ4dHtgz5nh4rgYL8xVmw9c71T77QsuS9wW5Uc 8k1GBD/fuHnF67/CuzLwxOH8CfgLt9ZTt6oRwjrfwMmegPczZ+Wo8mo8lTy6 5cqbCahP3pL6S7oG5cRS4WHSBNYM7KhPCq2BSrpCXk34BFh0qe++0FpUhCXO 3Hx4ApueuBj2+NVB1aYkZY7sBIis2LH6FU3YdDJH4anUBFJkpyh3OzXB+laq 39qpE3CbNrfn+b0m/PspbLe5YBxNR8592C/RjBpt+zG/nnEkZdjEnOhoxqXZ g+as7HFE3a34eP1GK75/nzFY4DKOIBl604n4dgS4vc1POTCOyPgVgz8q26HB cbwbaTeOzb8jHOcL2xE0+/Wmo5bjkFOLyeKodcDQZl+o7IZxrLt2j33JvwOJ lQm6TrLjMNZvDApe2YkLZYZ+wnwhQueMGxv/04Xl+/t2974XYsXhQ0/1L3Sh ZiBsZVWmEFWeJX5zg7uwenpPdfwLIW72l8ndTO9C545byyyihGjR91fcKeiC eXF9afQJIXS0D709eLMbSh8956xfKMSp5X1u5lE9KJfXO2swT4h9+6ZFz0js gc8/glpDeSHa2bo9WW97UC917e62aUIEmqZJ13zvQZhtjLwNZwyPihS/ysj/ hDirSPZE+RgWk9KEnKCfGFBQlI7/dwwJJlpdBw/34v6Rdo9E7zHc4X3zTDzb i+0fEsqTvcbQkPXLtTWgF0+d14akH2HuH5wP2dheHEjZNiN/zxjUam21Hlb2 otLIc3rT6jFUvb3avFunD2+PF02d1SbAUFMZnfKrD/rKJ7USGwQwPdPnnsHv Q873eQcNawTQup3pFD+1Hx8Nj2ce/yJAwCaV9ZZK/SibJX+oJEOAsBtGj3Ms +tHxxuljwHUBjshWaEs/64eUUODDWSvA4lXSqnPMB3A7PSExWF2AicGlJpW7 ByD7j1WNynIBei09DS8eHIBCxRM1a0UBHJZOFUWfGoDyY9PGl1MEEH0RS5KN GoDetii9w018ONUqHe5sG4BziNZQ0xU+lvYG1V51GYRPZvj1b5f4qCJPl2Yd GURk68jCggt8XCtlmbV5DqJs9TuzpJN8XDlTaD758iB0vhnEn9/Px4vkzvPp 0YOQkNm2d7Y2H/n3PislVQxCed0zSmINH3QRHSxTN4iNjhJXBSv4YCsM3jnS MohTaSWvOpX4OKY/dne0bxBNVpbT06fzsXmeybsrYiykhu7N3dnJg+bMFl+7 tSx8zsqyMWrlod505TehLgud7X8N6DTwoFSc7hFlwMJczRaFBd94eP/wwadE Exb8qpw8B7J5KDVIEW5yYMFG7qjK9TAeHny/tcgskAVeuG8QCA92L++mq1Ww 0LewYHC7AQ/aZZIOJTUs1CdKWFbo8qDaXVSzv4GFNzl35NrUeNhrPOmAQwcL J7uexwhm88BZNlOznM1Ct9b3VL3+UajOPXfTW55CzYf5s/K6RvHu9rkv++ZS +GjidHpb2yj8ZV5GaChSiLMf1NtdM4pQ8dAZ2Uso7AsQw6ncURwrV0nfqkmh omp1dUrYKCId+XU7LCjk7vfS0Qlmnv9h5nFvKwopPVmROddGsVTcwCTWmkIQ z3h/qc8oouVKOMV2FLYq23f3uo2iR+zG6ZhDFLRfxJmcdBrFAdZt53PuFJR1 e57T9qP4x3ofy+QohYkdnh5Tdo2iuCBn4stJCtme1+glG0YhKf1rq/VFCs/5 ZXbJOqPYdv2ufrMvhairsjmaGsz8FrAW2l+mcObeg8tk6ShkTze16V+loIEM yYPSo/hjGe0YEEIhXubH/PudXMjJVa8kDymEOxDJDa1c2Os//KPyiMKVpMec pnou4m8YPxx/TMHV+FDlgnIuBmUSqu8lUFA53x/46B0XRgrhsc4pFOQLzbyM MrjY/WL9fWEqhcmyKU6dKVx0WnR8Ck2j0JV8wmDpEy6izBJKHmRQeNo2/Ccx mIst7gPBFlnM+Op72nZc5yLCo5F+ks2M7/22rN+fC/cp2d//vGfGl7vwTP08 F2sfRs/2yqVg49gU/vUUF1yPtMDEPArGKQb+Hse50LvUFFKTT2GJyfj+NGcu 1rE2BMoVUJANdzTd5cBFapNh4LJPFMTaoTdky4XERnrT2kIKHReuyGpbcGHx I5+/qpjC41TJz2/1uHhclXajsIRCGP/Im72aXIj8fXQjSyn4by97PKrOhZZc fItjGQXnjhDfDcpcjMZs3dD8lcLfa34faVbkwi+/UBRcTsHIZ9deXwUuBMsz OvS+UVg8R14rT4qLAx+D5bwqKMi4nFnkOJWLhmlbTk+pZPb/5fcZIhGNS1Uj UqGMfwv0+I8ENHodzvbKVVH4seNerxFNQ1EheMZtxhURvNrOPzTO3uUFiFVT yO+0L7gySONc/DlrD8Zxvgtji9ppuHXvV1xTQ+G/kks3/2mmcV8ovfQK48sK 7ecl6mgE3HSPr2R80tXI7XkljRN13KcKtRQcXz2xNi2jYR9qpraHsZVwMhko opFY3WkYzHizmdvqW6DxQm1jfw5jjaji+atyaNg8Kl3bzVipW1WyPJNGci5/ wZTvFGZqBnE8XtE4HamZqcRY+O9Ap/QLGlcrvorWMqZKzSvTEmgcfbZEYiPj 1rmpubse0cge9a/YzLj8kPSLoWgat8y1nP93Pjf95L07ETRqqr0+aTJOHa8M 1A6lUeB9WbiIcay5llftTRoLe64pSDBeNsO8rCqQhr7YqrP9zPxSvrqqVPjR eL7r54sixtohvj5ffWjk3/dBDOOcnRE1JedozNZPyTrG2Fj6pfrnUzSCl2tH 6zIu+1Z8pfA4s1/8oqM8Zv1s/vvR/NGdxj327LXvGDdZjWrnu9CQ4Zb+PsHY eZZs8IcDNALjQtIWM+6vXNmdbUdj0nrhma/MfvH+3n/3jSWz3jPNVOUY+8ud YaWb0pCP2LkohdlvyZrgrWlbafikmGkTxnN3540kbWDmX761yJapl7jZ9RaJ ujQabxpaNjL1tfz77/j4tTS27lCfZstY11Z5T9xyGqLUh2qGTD3mKmxIfaBM w2MmLyaJqdet9dZTohfQqO+mdsswtrG7mnlXjsaffIXXJUy9N8+LnXlnJo1d c2kXJcYujZlu/0nS8IwqPunB9Mcp+945N8c5UPhhn8n/QiHUwezc5QEO9O7N v1JdxMx3oes33x4Ofup4pvKZ/otr9Vl+sZ2D5nfnDi5knHYwte5MHQfpJX8d sWb6t9xp1rqjBRzEjW9J82H6fY/yyv/cczloePg11pvJg5YOo95DWRxMehlm 4PmBwqCLV5TjSw5sArPvWTH5Mc2tjrs7moOjWwZdKzKZfl7228o6goMnF1ps n7yhMO+nxHOrUA4a3dwXe76moOqub2d2jQNvoydmY68omBx5kLX5NAdjkxUC 6l8w+eThckHNjAOJzTGPY5m8/PGfY2zOVg6Sa7fVTDB5apDh8NFiMwdJezZb OMRSGKZtp53U4UDs8QF18WhmvfzM779W4mCLzuvNs8KZfAjXyd44PILzd6Sy lZi8js3UbC2nRtCY1z1jRQBTD/VrxBz7RmD0223SKj8K6QtWmvq3jkC6TqNP hcn/xc8WNhZ9HgFC7PRqvZj8yJrKs3wwgoqFX68ZuFDY3zx5YXvkCFzDF3sP OVJ4JxSRU2Ej+ODV5fjkANPvWwQ3wq8x4weqq3KY91Vb2e95DZ4jGOF0LXFk 3m+5bQ3rnbeNQHV8sYapAQVf8RfeXr+GISA1EVEyzP3RjhLO/cNobRFO7Z3B 5PXa2ZGW3cMYkHGJ1ppOwdzh39crm4Yx/ae/Xp44hb/eWP36UTSMO7ESyYk8 FjJdR1wtYoeh7b7qSXEnC78LNlktsxjGwYW9JjszWHDxr1xWn8QG66eVk952 FvY2PdrcFs8GverzvBxjFsy1T+3riWPDKoZ0bSQs6PbIhgxHsCGpsSh7nT4L 00xtRmQC2Ni+e8ub6eospM2qK9hhz0Zq1rNNK6RZGItrdnw/nY2y2tovNtXM 91bez/uxx4bg2/bpLG09iJz2lTNTVX4jLnZovG3RAJbKGhnviWNBzUiuwaSz D6/Vg451dffjyl5xcv9kL9qLM5TXrWO+cxMHs6p/9eDn6khtvOuGavWlquMX uiF3OXmdxqROTDwb2zO1oROr1/1Z/WykFdIqurt2mHbg6rZfVe8vNCD96LOg DuU2KOxJC7OfV4OWiqg17MwmvOYWzypZVoZjRfWvDXzr8azl5+2BwHyoLYl2 yuTU4KD1wsyWQwl4MhFk4mRWifdSvnWfzsUTJcu9Fz9+KoFe16RFAftAMrZN b/V8XoClQx/4Bp9KySHq75Q5k97BLL7pm9W+GnJdijv7qm4cTCzlxem3DcSr YF9sXFIMCXVq8NfMaiXbj12OdGW/IV+slKT/lu8kPRoPZnevKSC/lihcronp JibH9WRaBr6Qc2dXuYTO7SV7ZV+PCAIrSEOrrI17ST8567XSz6+xhjhf3NQn uZNFpC8rvHDSqieFq9bfKpz6m5gaak2NrGkiqtNz+xNMhwjHrH+Pz7o2opR7 3GRqEJuMrOs+ULitg4gJJid7dQ2TKm3rRnf5LjJqnedYvJxDtHQsD1oVdJMW XacFywNp0j2nsNIq4ic5ZScrp9LKJaZk9e06xz4yP6Jn3xQlHrHbe+xxlNQA SXN4/HzkAp9Ihe2M8mgeJHaGfqYleQJyyOqv5IvBFMlwPKFiIBwjtVfFzCR0 fxOe1Fbx97bj5PSODzwbsSFiU71xndL9CaIr+Zy7qWGISG2cUZD7cIIsGi+P ETYPkYKEZosD8RNkhtskkvtjiGheuOjyIG2CrDGNvLGxd4jILM4KmV88QRSL Ds83oIdIqYd2t8LwBHl/5wVZP5tNjKaphcnsFJH9XcZRWrvYhHeap5hmLSKH MxU3sW3Y5FXLl2eWdiLC1xB1pu9lk0Wv3D+EuIqIa/+vNZqObCK0TeiVuigi vQLnzxon2CQrfrGhZKKI/CTh/FXBbHJS+s+XxBQREffReMz6j01UvfNttmeI CO92/faUcDaJMD945FquiDyUM49Qj2ETL3bMXfFaEWlek7dWLZlN1B2OLYpv FJGLre/q+1PZpLNoQ7LxDxGJnpx7KSmdTf6+35gfMCAi2tf6v67IZpNpk5PM lvwRkZels870fWATHPf+/pEjIm9tjRWfg03O1213chaIyAkl/wL3Qjb5//8d ZLJC6RHVL2zyf42ZyDo= "]]}, "Charting`Private`Tag#1"]}}, {}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2, 2}, {-0.9009088547970725, 1.1111206143553436`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ Opacity[1.], AbsoluteThickness[2], Thickness[Large], RGBColor[0, 0, 1]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[1, 0, 0], PointSize[Large], AbsoluteThickness[2], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}, PlotRangePadding->Scaled[0.15]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}], TraditionalForm], {0., 0.}, Automatic, Offset[ 10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u7+b49gTxlUP9i833/vS N//X/ly91xVaf1/srwIr+L7/mm04i3vym/1++WCR/T2d7p51D97sV+SOPOEk 9mm/xfJbRzcvfb3/lS9Iwbv9H/yDDBnSX+6f2KqTosj9cv/HuXk5R/ue7bcA GV/1eP+hzu7MW9GP94O5l2/v3xrw33/3s/v7wcZturBfSe5TTcW1G/tTwBZs 28/FnzLn8oKLML59ebBctfGqIzD19ptm10YufbQcZp596cTfOZMnbLSH2md/ qFqSMXzScXuoe+xDXvslPjK4bA91r/1T5cDT+rNu2UP9Yz9DtX6NGdNDe6h/ 7YM5+RLmbH9iDw0P+/q1239o576wh4aXvU7pioArSm/soeFpf2jxJbfuG+/t ocHsoLPkQL7q8Y/2AIEJyGw= "]], FontFamily->"Arial"]}, Annotation[#, "Charting`Private`Tag#1"]& ], { "WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]], GeometricTransformation[ Inset[ Style[ Graphics[{ EdgeForm[], Disk[{0, 0}]}, PlotRangePadding -> Scaled[0.15]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}], {0., 0.}, Automatic, Offset[10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u7+b49gTxlUP9i833/vS N//X/ly91xVaf1/srwIr+L7/mm04i3vym/1++WCR/T2d7p51D97sV+SOPOEk 9mm/xfJbRzcvfb3/lS9Iwbv9H/yDDBnSX+6f2KqTosj9cv/HuXk5R/ue7bcA GV/1eP+hzu7MW9GP94O5l2/v3xrw33/3s/v7wcZturBfSe5TTcW1G/tTwBZs 28/FnzLn8oKLML59ebBctfGqIzD19ptm10YufbQcZp596cTfOZMnbLSH2md/ qFqSMXzScXuoe+xDXvslPjK4bA91r/1T5cDT+rNu2UP9Yz9DtX6NGdNDe6h/ 7YM5+RLmbH9iDw0P+/q1239o576wh4aXvU7pioArSm/soeFpf2jxJbfuG+/t ocHsoLPkQL7q8Y/2AIEJyGw= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.9024039679755318, 1.11111968663523}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.9024039679755318, 1.11111968663523}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]], GeometricTransformation[ Inset[ Style[ Graphics[{ EdgeForm[], Disk[{0, 0}]}, PlotRangePadding -> Scaled[0.15]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}], {0., 0.}, Automatic, Offset[10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u7+b49gTxlUP9i833/vS N//X/ly91xVaf1/srwIr+L7/mm04i3vym/1++WCR/T2d7p51D97sV+SOPOEk 9mm/xfJbRzcvfb3/lS9Iwbv9H/yDDBnSX+6f2KqTosj9cv/HuXk5R/ue7bcA GV/1eP+hzu7MW9GP94O5l2/v3xrw33/3s/v7wcZturBfSe5TTcW1G/tTwBZs 28/FnzLn8oKLML59ebBctfGqIzD19ptm10YufbQcZp596cTfOZMnbLSH2md/ qFqSMXzScXuoe+xDXvslPjK4bA91r/1T5cDT+rNu2UP9Yz9DtX6NGdNDe6h/ 7YM5+RLmbH9iDw0P+/q1239o576wh4aXvU7pioArSm/soeFpf2jxJbfuG+/t ocHsoLPkQL7q8Y/2AIEJyGw= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.9024039679755318, 1.11111968663523}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, {{}, InterpretationBox[{ TagBox[ TagBox[ {RGBColor[0, 1, 0], PointSize[Large], AbsoluteThickness[2], StyleBox[GeometricTransformationBox[InsetBox[ FormBox[ StyleBox[ GraphicsBox[ {EdgeForm[None], DiskBox[{0, 0}]}, PlotRangePadding->Scaled[0.15]], StripOnInput->False, GraphicsBoxOptions->{DefaultBaseStyle->Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}], TraditionalForm], {0., 0.}, Automatic, Offset[ 10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u3+BkemNlU0P9i833/vS N//X/sNPWkMnnHuxvwqs4Pv+LqEzex5Yvtnvlw8W2b/qa4fH2f1v9ityR55w Evu0vzLqgEZD7+v9r3xBCt7ttwhKYDwb+nL/xFadFEXul/uZP6xmfdz0bL8F yPiqx/v3Tvitej4YSIO4l2/v/9Jw3pz5zv39YOM2Xdjfm2i+I+v8jf0pYAu2 7e/YusrQes5FGN/+zPyvwc5LjsDU21t3KvxMv7wcZp69ip/WrPypG+2h9tl3 XXp18OHk4/ZQ99gvcnYUije8bA91r32NUKZT3axb9lD/2J9dds7Nn+mhPdS/ 9h6Luw+u3v7EHhoe9sFVtf2muS/soeFl79Zt5X5L6Y09NDztz/Qz/+q78d4e GswOJQX/p6gd/2gPAMTiyq8= "]], FontFamily->"Arial"]}, Annotation[#, "Charting`Private`Tag#1"]& ], { "WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{ Annotation[{ Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]], GeometricTransformation[ Inset[ Style[ Graphics[{ EdgeForm[], Disk[{0, 0}]}, PlotRangePadding -> Scaled[0.15]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}], {0., 0.}, Automatic, Offset[10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u3+BkemNlU0P9i833/vS N//X/sNPWkMnnHuxvwqs4Pv+LqEzex5Yvtnvlw8W2b/qa4fH2f1v9ityR55w Evu0vzLqgEZD7+v9r3xBCt7ttwhKYDwb+nL/xFadFEXul/uZP6xmfdz0bL8F yPiqx/v3Tvitej4YSIO4l2/v/9Jw3pz5zv39YOM2Xdjfm2i+I+v8jf0pYAu2 7e/YusrQes5FGN/+zPyvwc5LjsDU21t3KvxMv7wcZp69ip/WrPypG+2h9tl3 XXp18OHk4/ZQ99gvcnYUije8bA91r32NUKZT3axb9lD/2J9dds7Nn+mhPdS/ 9h6Luw+u3v7EHhoe9sFVtf2muS/soeFl79Zt5X5L6Y09NDztz/Qz/+q78d4e GswOJQX/p6gd/2gPAMTiyq8= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.8984133164118948, 1.1111207790591182`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.8984133164118948, 1.1111207790591182`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{ Annotation[{ Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]], GeometricTransformation[ Inset[ Style[ Graphics[{ EdgeForm[], Disk[{0, 0}]}, PlotRangePadding -> Scaled[0.15]], GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}], {0., 0.}, Automatic, Offset[10.976]], CompressedData[" 1:eJxTTMoPSmVmYGCQAGJGIGZigIMDMMbl2fe+LDP/u3+BkemNlU0P9i833/vS N//X/sNPWkMnnHuxvwqs4Pv+LqEzex5Yvtnvlw8W2b/qa4fH2f1v9ityR55w Evu0vzLqgEZD7+v9r3xBCt7ttwhKYDwb+nL/xFadFEXul/uZP6xmfdz0bL8F yPiqx/v3Tvitej4YSIO4l2/v/9Jw3pz5zv39YOM2Xdjfm2i+I+v8jf0pYAu2 7e/YusrQes5FGN/+zPyvwc5LjsDU21t3KvxMv7wcZp69ip/WrPypG+2h9tl3 XXp18OHk4/ZQ99gvcnYUije8bA91r32NUKZT3axb9lD/2J9dds7Nn+mhPdS/ 9h6Luw+u3v7EHhoe9sFVtf2muS/soeFl79Zt5X5L6Y09NDztz/Qz/+q78d4e GswOJQX/p6gd/2gPAMTiyq8= "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {-0.8984133164118948, 1.1111207790591182`}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Large]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{ FormBox["\"x\"", TraditionalForm], FormBox["\"y\"", TraditionalForm]}, AxesOrigin->{0, 0}, BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->Large, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotLabel->FormBox[ "\"Por\[OAcute]wnanie Rozwi\:0105za\:0144\"", TraditionalForm], PlotRange->All, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}], ",", GraphicsBox[{{{}, InterpretationBox[{ TagBox[{{}, {}, TagBox[ {RGBColor[1, 0, 0], PointSize[Medium], AbsoluteThickness[2], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/1ca+5bCcL7Zeb733pm/9r /8J/y1Lm8ZfaV4EVfN//fN9Xt6YtRfZ++WCR/dsZ9d6t6Mi1V+SOPOEk9ml/ zaRlrSdvp9q/8gUpeLc/8ce+iJP88fYTW3VSFLlf7s8WlT3yviTU3gJkfNXj /bMWXZv3jdPXHsy9fHv/JRsnrlvhzvZg4zZd2K9jn8vYXWxpnwK2YNv+LT7q TcsmG8D49ndfiZeYZKnC1NuHd//yE66Uhpln/1mZYduyFkGYffa5vktWyVmx wdxj/6P+2p8u4T92UPfad7W7Tjm18qMd1D/2lRmfhY6rPrOD+tfeMurqUY/1 t+2g4WGfMXN9cIjjRTtoeNmbPZhkv7rkqB00PO11PsnM95+3yw4azA6n5m6+ 4Vi1wQ4AMji69g== "]], FontFamily->"Arial"]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, { "WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{}, {}, Annotation[{ Hue[0.67, 0.6, 0.6], Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Medium]], Line[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/1ca+5bCcL7Zeb733pm/9r /8J/y1Lm8ZfaV4EVfN//fN9Xt6YtRfZ++WCR/dsZ9d6t6Mi1V+SOPOEk9ml/ zaRlrSdvp9q/8gUpeLc/8ce+iJP88fYTW3VSFLlf7s8WlT3yviTU3gJkfNXj /bMWXZv3jdPXHsy9fHv/JRsnrlvhzvZg4zZd2K9jn8vYXWxpnwK2YNv+LT7q TcsmG8D49ndfiZeYZKnC1NuHd//yE66Uhpln/1mZYduyFkGYffa5vktWyVmx wdxj/6P+2p8u4T92UPfad7W7Tjm18qMd1D/2lRmfhY6rPrOD+tfeMurqUY/1 t+2g4WGfMXN9cIjjRTtoeNmbPZhkv7rkqB00PO11PsnM95+3yw4azA6n5m6+ 4Vi1wQ4AMji69g== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.00514184830029732}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.00514184830029732}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{}, {}, Annotation[{ Hue[0.67, 0.6, 0.6], Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Medium]], Line[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/1ca+5bCcL7Zeb733pm/9r /8J/y1Lm8ZfaV4EVfN//fN9Xt6YtRfZ++WCR/dsZ9d6t6Mi1V+SOPOEk9ml/ zaRlrSdvp9q/8gUpeLc/8ce+iJP88fYTW3VSFLlf7s8WlT3yviTU3gJkfNXj /bMWXZv3jdPXHsy9fHv/JRsnrlvhzvZg4zZd2K9jn8vYXWxpnwK2YNv+LT7q TcsmG8D49ndfiZeYZKnC1NuHd//yE66Uhpln/1mZYduyFkGYffa5vktWyVmx wdxj/6P+2p8u4T92UPfad7W7Tjm18qMd1D/2lRmfhY6rPrOD+tfeMurqUY/1 t+2g4WGfMXN9cIjjRTtoeNmbPZhkv7rkqB00PO11PsnM95+3yw4azA6n5m6+ 4Vi1wQ4AMji69g== "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.00514184830029732}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[1, 0, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}, {{}, InterpretationBox[{ TagBox[{{}, {}, TagBox[ {RGBColor[0, 1, 0], PointSize[Medium], AbsoluteThickness[2], StyleBox[LineBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/hA6ZNv/Tt7Jeb733pm/9r v++Wd/mzXjvaV4EVfN9fUfLvpfgre3u/fLDI/hQW/eZ9Tpb2ityRJ5zEPu3X TTFcOmefkf0rX5CCd/udjjyO3LJFy35iq06KIvfL/TNsv3G+q1OytwAZX/V4 /5rubI69EpL2YO7l2/u51F6t2nRIwB5s3KYL+3/P1fCxl2GzTwFbsG3/ycbX xm4P/thB+fY8ottKHTd/soOqt3/OFxyZzfvCDmqefelaTf8HB+7ZQe2z193k GFbcf9kO6h57ztsvTvYcPWEHda+9jQdL2Tb7/XZQ/9i3mvMWOS/ZbAf1r73K 2bkFk+eusIOGhz2bfHd8yeF5dtDwsp9avuzYC53JdtDwtJ/1qJ9z3812O2gw O7Awee5dN6vWDgBYOrgp "]], FontFamily->"Arial"]}, Annotation[#, "Charting`Private`Tag#1"]& ]}, { "WolframDynamicHighlight", <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], StyleBox[ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, Slot["HighlightElements"], Slot["LayoutOptions"], Slot["Meta"], Charting`HighlightActionFunction["DynamicHighlight", {{{}, {}, Annotation[{ Hue[0.67, 0.6, 0.6], Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Medium]], Line[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/hA6ZNv/Tt7Jeb733pm/9r v++Wd/mzXjvaV4EVfN9fUfLvpfgre3u/fLDI/hQW/eZ9Tpb2ityRJ5zEPu3X TTFcOmefkf0rX5CCd/udjjyO3LJFy35iq06KIvfL/TNsv3G+q1OytwAZX/V4 /5rubI69EpL2YO7l2/u51F6t2nRIwB5s3KYL+3/P1fCxl2GzTwFbsG3/ycbX xm4P/thB+fY8ottKHTd/soOqt3/OFxyZzfvCDmqefelaTf8HB+7ZQe2z193k GFbcf9kO6h57ztsvTvYcPWEHda+9jQdL2Tb7/XZQ/9i3mvMWOS/ZbAf1r73K 2bkFk+eusIOGhz2bfHd8yeF5dtDwsp9avuzYC53JdtDwtJ/1qJ9z3812O2gw O7Awee5dN6vWDgBYOrgp "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.0005468849266115988}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.0005468849266115988}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <| "CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>], ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, { 4.503599627370496*^15, -4.503599627370496*^15}}], Selectable->False]}, Annotation[{{{}, {}, Annotation[{ Hue[0.67, 0.6, 0.6], Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Medium]], Line[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQDQUHYIzLs+99WWb+d3/hA6ZNv/Tt7Jeb733pm/9r v++Wd/mzXjvaV4EVfN9fUfLvpfgre3u/fLDI/hQW/eZ9Tpb2ityRJ5zEPu3X TTFcOmefkf0rX5CCd/udjjyO3LJFy35iq06KIvfL/TNsv3G+q1OytwAZX/V4 /5rubI69EpL2YO7l2/u51F6t2nRIwB5s3KYL+3/P1fCxl2GzTwFbsG3/ycbX xm4P/thB+fY8ottKHTd/soOqt3/OFxyZzfvCDmqefelaTf8HB+7ZQe2z193k GFbcf9kO6h57ztsvTvYcPWEHda+9jQdL2Tb7/XZQ/9i3mvMWOS/ZbAf1r73K 2bkFk+eusIOGhz2bfHd8yeF5dtDwsp9avuzYC53JdtDwtJ/1qJ9z3812O2gw O7Awee5dN6vWDgBYOrgp "]]}, "Charting`Private`Tag#1"]}}, <| "HighlightElements" -> <| "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, "LayoutOptions" -> <| "PanelPlotLayout" -> <||>, "PlotRange" -> {{-2., 2.}, {0, 0.0005468849266115988}}, "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Arial"}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> { Directive[ AbsoluteThickness[2], FontFamily -> "Arial", RGBColor[0, 1, 0], PointSize[Medium]]}, "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "ScalingFunctions" -> {{Identity, Identity}, { Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, "Meta" -> <| "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> ListPlot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]], {{}, {}}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{ FormBox["\"x\"", TraditionalForm], FormBox["\"B\[LSlash]\:0105d\"", TraditionalForm]}, AxesOrigin->{0, 0}, BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->True, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->Large, Method->{ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> { Directive[ RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2]], Directive[ RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2]], Directive[ RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[2]], Directive[ RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[2]], Directive[ RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[2]], Directive[ RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[2]], Directive[ RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[2]], Directive[ RGBColor[1, 0.75, 0], AbsoluteThickness[2]], Directive[ RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[2]], Directive[ RGBColor[0.571589, 0.586483, 0.], AbsoluteThickness[2]], Directive[ RGBColor[0.915, 0.3325, 0.2125], AbsoluteThickness[2]], Directive[ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], AbsoluteThickness[2]], Directive[ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], AbsoluteThickness[2]], Directive[ RGBColor[0.736782672705901, 0.358, 0.5030266573755369], AbsoluteThickness[2]], Directive[ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentSet", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ Identity[ Part[#, 1]], Identity[ Part[#, 2]]}& )}}, PlotLabel->FormBox[ "\"Por\[OAcute]wnanie B\[LSlash]\:0119d\[OAcute]w\"", TraditionalForm], PlotRange->All, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]}], "}"}]], "Output", CellChangeTimes->{ 3.946880524643917*^9, {3.9468808840586557`*^9, 3.946880911982299*^9}, 3.946881137918648*^9, {3.946881264554685*^9, 3.9468812721473103`*^9}, 3.9468813220433292`*^9, 3.946881390233761*^9, 3.9468814552520943`*^9, 3.946881633930612*^9, 3.9468817168527*^9, 3.946881796278796*^9, 3.946881852290012*^9, {3.946881966259048*^9, 3.94688197418267*^9}, 3.946882085198658*^9, 3.946882212352742*^9}, CellLabel->"Out[90]=",ExpressionUUID->"68a6c641-3abf-44a4-9e92-aafafd790e02"] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.946880907115522*^9, 3.9468809083217087`*^9}},ExpressionUUID->"d3fd8c74-d203-4be6-a9e5-\ 0a0569336d82"] }, Open ]] }, Open ]] }, Open ]] }, WindowSize->{1470, 830}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, FrontEndVersion->"14.1 for Mac OS X ARM (64-bit) (July 16, 2024)", StyleDefinitions->FrontEnd`FileName[{"Report"}, "StandardReport.nb", CharacterEncoding -> "UTF-8"], ExpressionUUID->"29fed851-d3e2-4bfb-959d-7747c2b6e97d" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 465, 9, 60, "Department",ExpressionUUID->"3ecdf458-2a6b-44bb-9565-9724cb61e3d2"], Cell[CellGroupData[{ Cell[1048, 33, 827, 13, 103, "Title",ExpressionUUID->"ef2da835-16bd-4bb6-b48d-e0e621a4805f"], Cell[1878, 48, 216, 4, 32, "Text",ExpressionUUID->"867bd96c-1d1b-47bd-8155-a686c54958f9"], Cell[2097, 54, 720, 18, 26, "Item",ExpressionUUID->"98a6277e-6d13-4077-b793-753ccae6cca1"], Cell[2820, 74, 463, 10, 26, "Item",ExpressionUUID->"cfa79e64-24e8-4bb7-b10e-0418f706dc42"], Cell[3286, 86, 507, 11, 26, "Item",ExpressionUUID->"ce45a20e-411e-43e3-b785-10972edb6363"], Cell[3796, 99, 538, 11, 26, "Item",ExpressionUUID->"ab84fd27-8933-49cb-ad4a-f89ea3c965e5"], Cell[4337, 112, 504, 10, 26, "Item",ExpressionUUID->"8f4e220e-3cd5-44ea-93b7-653ac15af1d3"], Cell[4844, 124, 1912, 38, 120, "Text",ExpressionUUID->"c78f0f99-99af-4713-8e3e-831db212afc6"], Cell[CellGroupData[{ Cell[6781, 166, 418, 7, 76, "Section",ExpressionUUID->"551cbe7d-59fd-4546-8315-55133ac9b132"], Cell[CellGroupData[{ Cell[7224, 177, 267, 4, 33, "Subsection",ExpressionUUID->"8fa7985c-986e-481d-a979-4cc24fd63161"], Cell[7494, 183, 13640, 270, 690, "Program",ExpressionUUID->"93c030cc-d8e3-481e-bb67-d7a2b2f18e17"] }, Open ]], Cell[CellGroupData[{ Cell[21171, 458, 316, 5, 33, "Subsection",ExpressionUUID->"a5f0ea50-e8d3-4c91-be56-bfc3dec97ef4"], Cell[21490, 465, 20278, 368, 572, "Program",ExpressionUUID->"b8430853-1e50-4a7b-84d0-d63343373357"] }, Closed]], Cell[CellGroupData[{ Cell[41805, 838, 294, 5, 33, "Subsection",ExpressionUUID->"4cca3cd3-d091-4023-89f4-0f91dc47decf"], Cell[42102, 845, 20095, 371, 552, "Program",ExpressionUUID->"ce91827c-53a9-453b-a51e-4839db2c2bfa"] }, Closed]], Cell[CellGroupData[{ Cell[62234, 1221, 292, 5, 33, "Subsection",ExpressionUUID->"158bf60d-30d9-4203-a0fd-e8a11c4b4250"], Cell[62529, 1228, 23186, 397, 680, "Program",ExpressionUUID->"a023ff73-a732-4406-bafb-91e120da8664"], Cell[CellGroupData[{ Cell[85740, 1629, 12614, 328, 1143, "Input",ExpressionUUID->"3d63913b-422d-4d07-9377-b2b21746a2cd"], Cell[98357, 1959, 56991, 1154, 407, "Output",ExpressionUUID->"68a6c641-3abf-44a4-9e92-aafafd790e02"] }, Open ]], Cell[155363, 3116, 154, 3, 40, "Input",ExpressionUUID->"d3fd8c74-d203-4be6-a9e5-0a0569336d82"] }, Open ]] }, Open ]] }, Open ]] } ] *)